Evaluate
8.25
Factor
\frac{3 \cdot 11}{2 ^ {2}} = 8\frac{1}{4} = 8.25
Share
Copied to clipboard
0.75\times \frac{14+1}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+7.5\times \frac{1}{7}
Multiply 2 and 7 to get 14.
0.75\times \frac{15}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+7.5\times \frac{1}{7}
Add 14 and 1 to get 15.
\frac{3}{4}\times \frac{15}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+7.5\times \frac{1}{7}
Convert decimal number 0.75 to fraction \frac{75}{100}. Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{3\times 15}{4\times 7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+7.5\times \frac{1}{7}
Multiply \frac{3}{4} times \frac{15}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{45}{28}+\frac{3}{4}\times \frac{7\times 7+3}{7}+7.5\times \frac{1}{7}
Do the multiplications in the fraction \frac{3\times 15}{4\times 7}.
\frac{45}{28}+\frac{3}{4}\times \frac{49+3}{7}+7.5\times \frac{1}{7}
Multiply 7 and 7 to get 49.
\frac{45}{28}+\frac{3}{4}\times \frac{52}{7}+7.5\times \frac{1}{7}
Add 49 and 3 to get 52.
\frac{45}{28}+\frac{3\times 52}{4\times 7}+7.5\times \frac{1}{7}
Multiply \frac{3}{4} times \frac{52}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{45}{28}+\frac{156}{28}+7.5\times \frac{1}{7}
Do the multiplications in the fraction \frac{3\times 52}{4\times 7}.
\frac{45+156}{28}+7.5\times \frac{1}{7}
Since \frac{45}{28} and \frac{156}{28} have the same denominator, add them by adding their numerators.
\frac{201}{28}+7.5\times \frac{1}{7}
Add 45 and 156 to get 201.
\frac{201}{28}+\frac{15}{2}\times \frac{1}{7}
Convert decimal number 7.5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{201}{28}+\frac{15\times 1}{2\times 7}
Multiply \frac{15}{2} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{201}{28}+\frac{15}{14}
Do the multiplications in the fraction \frac{15\times 1}{2\times 7}.
\frac{201}{28}+\frac{30}{28}
Least common multiple of 28 and 14 is 28. Convert \frac{201}{28} and \frac{15}{14} to fractions with denominator 28.
\frac{201+30}{28}
Since \frac{201}{28} and \frac{30}{28} have the same denominator, add them by adding their numerators.
\frac{231}{28}
Add 201 and 30 to get 231.
\frac{33}{4}
Reduce the fraction \frac{231}{28} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}