Solve for x
x=\frac{25\sqrt{10857}}{7}+375\approx 747.131889062
x=-\frac{25\sqrt{10857}}{7}+375\approx 2.868110938
Graph
Share
Copied to clipboard
0.7x^{2}-525x+1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-525\right)±\sqrt{\left(-525\right)^{2}-4\times 0.7\times 1500}}{2\times 0.7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.7 for a, -525 for b, and 1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-525\right)±\sqrt{275625-4\times 0.7\times 1500}}{2\times 0.7}
Square -525.
x=\frac{-\left(-525\right)±\sqrt{275625-2.8\times 1500}}{2\times 0.7}
Multiply -4 times 0.7.
x=\frac{-\left(-525\right)±\sqrt{275625-4200}}{2\times 0.7}
Multiply -2.8 times 1500.
x=\frac{-\left(-525\right)±\sqrt{271425}}{2\times 0.7}
Add 275625 to -4200.
x=\frac{-\left(-525\right)±5\sqrt{10857}}{2\times 0.7}
Take the square root of 271425.
x=\frac{525±5\sqrt{10857}}{2\times 0.7}
The opposite of -525 is 525.
x=\frac{525±5\sqrt{10857}}{1.4}
Multiply 2 times 0.7.
x=\frac{5\sqrt{10857}+525}{1.4}
Now solve the equation x=\frac{525±5\sqrt{10857}}{1.4} when ± is plus. Add 525 to 5\sqrt{10857}.
x=\frac{25\sqrt{10857}}{7}+375
Divide 525+5\sqrt{10857} by 1.4 by multiplying 525+5\sqrt{10857} by the reciprocal of 1.4.
x=\frac{525-5\sqrt{10857}}{1.4}
Now solve the equation x=\frac{525±5\sqrt{10857}}{1.4} when ± is minus. Subtract 5\sqrt{10857} from 525.
x=-\frac{25\sqrt{10857}}{7}+375
Divide 525-5\sqrt{10857} by 1.4 by multiplying 525-5\sqrt{10857} by the reciprocal of 1.4.
x=\frac{25\sqrt{10857}}{7}+375 x=-\frac{25\sqrt{10857}}{7}+375
The equation is now solved.
0.7x^{2}-525x+1500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.7x^{2}-525x+1500-1500=-1500
Subtract 1500 from both sides of the equation.
0.7x^{2}-525x=-1500
Subtracting 1500 from itself leaves 0.
\frac{0.7x^{2}-525x}{0.7}=-\frac{1500}{0.7}
Divide both sides of the equation by 0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{525}{0.7}\right)x=-\frac{1500}{0.7}
Dividing by 0.7 undoes the multiplication by 0.7.
x^{2}-750x=-\frac{1500}{0.7}
Divide -525 by 0.7 by multiplying -525 by the reciprocal of 0.7.
x^{2}-750x=-\frac{15000}{7}
Divide -1500 by 0.7 by multiplying -1500 by the reciprocal of 0.7.
x^{2}-750x+\left(-375\right)^{2}=-\frac{15000}{7}+\left(-375\right)^{2}
Divide -750, the coefficient of the x term, by 2 to get -375. Then add the square of -375 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-750x+140625=-\frac{15000}{7}+140625
Square -375.
x^{2}-750x+140625=\frac{969375}{7}
Add -\frac{15000}{7} to 140625.
\left(x-375\right)^{2}=\frac{969375}{7}
Factor x^{2}-750x+140625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-375\right)^{2}}=\sqrt{\frac{969375}{7}}
Take the square root of both sides of the equation.
x-375=\frac{25\sqrt{10857}}{7} x-375=-\frac{25\sqrt{10857}}{7}
Simplify.
x=\frac{25\sqrt{10857}}{7}+375 x=-\frac{25\sqrt{10857}}{7}+375
Add 375 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}