Evaluate
1.4
Factor
\frac{7}{5} = 1\frac{2}{5} = 1.4
Share
Copied to clipboard
0.7\times \frac{11+2}{11}-6.6\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Multiply 1 and 11 to get 11.
0.7\times \frac{13}{11}-6.6\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Add 11 and 2 to get 13.
\frac{7}{10}\times \frac{13}{11}-6.6\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Convert decimal number 0.7 to fraction \frac{7}{10}.
\frac{7\times 13}{10\times 11}-6.6\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Multiply \frac{7}{10} times \frac{13}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{91}{110}-6.6\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Do the multiplications in the fraction \frac{7\times 13}{10\times 11}.
\frac{91}{110}-\frac{33}{5}\times \frac{3}{7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Convert decimal number 6.6 to fraction \frac{66}{10}. Reduce the fraction \frac{66}{10} to lowest terms by extracting and canceling out 2.
\frac{91}{110}-\frac{33\times 3}{5\times 7}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Multiply \frac{33}{5} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{91}{110}-\frac{99}{35}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Do the multiplications in the fraction \frac{33\times 3}{5\times 7}.
\frac{637}{770}-\frac{2178}{770}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Least common multiple of 110 and 35 is 770. Convert \frac{91}{110} and \frac{99}{35} to fractions with denominator 770.
\frac{637-2178}{770}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Since \frac{637}{770} and \frac{2178}{770} have the same denominator, subtract them by subtracting their numerators.
-\frac{1541}{770}-\frac{2.2}{\frac{7}{3}}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Subtract 2178 from 637 to get -1541.
-\frac{1541}{770}-2.2\times \frac{3}{7}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Divide 2.2 by \frac{7}{3} by multiplying 2.2 by the reciprocal of \frac{7}{3}.
-\frac{1541}{770}-\frac{11}{5}\times \frac{3}{7}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Convert decimal number 2.2 to fraction \frac{22}{10}. Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
-\frac{1541}{770}-\frac{11\times 3}{5\times 7}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Multiply \frac{11}{5} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{1541}{770}-\frac{33}{35}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Do the multiplications in the fraction \frac{11\times 3}{5\times 7}.
-\frac{1541}{770}-\frac{726}{770}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Least common multiple of 770 and 35 is 770. Convert -\frac{1541}{770} and \frac{33}{35} to fractions with denominator 770.
\frac{-1541-726}{770}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Since -\frac{1541}{770} and \frac{726}{770} have the same denominator, subtract them by subtracting their numerators.
-\frac{2267}{770}+0.7\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Subtract 726 from -1541 to get -2267.
-\frac{2267}{770}+\frac{7}{10}\times \frac{9}{11}+\frac{3.3}{\frac{7}{8}}
Convert decimal number 0.7 to fraction \frac{7}{10}.
-\frac{2267}{770}+\frac{7\times 9}{10\times 11}+\frac{3.3}{\frac{7}{8}}
Multiply \frac{7}{10} times \frac{9}{11} by multiplying numerator times numerator and denominator times denominator.
-\frac{2267}{770}+\frac{63}{110}+\frac{3.3}{\frac{7}{8}}
Do the multiplications in the fraction \frac{7\times 9}{10\times 11}.
-\frac{2267}{770}+\frac{441}{770}+\frac{3.3}{\frac{7}{8}}
Least common multiple of 770 and 110 is 770. Convert -\frac{2267}{770} and \frac{63}{110} to fractions with denominator 770.
\frac{-2267+441}{770}+\frac{3.3}{\frac{7}{8}}
Since -\frac{2267}{770} and \frac{441}{770} have the same denominator, add them by adding their numerators.
\frac{-1826}{770}+\frac{3.3}{\frac{7}{8}}
Add -2267 and 441 to get -1826.
-\frac{83}{35}+\frac{3.3}{\frac{7}{8}}
Reduce the fraction \frac{-1826}{770} to lowest terms by extracting and canceling out 22.
-\frac{83}{35}+3.3\times \frac{8}{7}
Divide 3.3 by \frac{7}{8} by multiplying 3.3 by the reciprocal of \frac{7}{8}.
-\frac{83}{35}+\frac{33}{10}\times \frac{8}{7}
Convert decimal number 3.3 to fraction \frac{33}{10}.
-\frac{83}{35}+\frac{33\times 8}{10\times 7}
Multiply \frac{33}{10} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{83}{35}+\frac{264}{70}
Do the multiplications in the fraction \frac{33\times 8}{10\times 7}.
-\frac{83}{35}+\frac{132}{35}
Reduce the fraction \frac{264}{70} to lowest terms by extracting and canceling out 2.
\frac{-83+132}{35}
Since -\frac{83}{35} and \frac{132}{35} have the same denominator, add them by adding their numerators.
\frac{49}{35}
Add -83 and 132 to get 49.
\frac{7}{5}
Reduce the fraction \frac{49}{35} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}