Solve for x
x=-\frac{52y}{69}+\frac{9028}{23}
Solve for y
y=-\frac{69x}{52}+\frac{6771}{13}
Graph
Share
Copied to clipboard
0.69x=270.84-0.52y
Subtract 0.52y from both sides.
0.69x=\frac{6771-13y}{25}
The equation is in standard form.
\frac{0.69x}{0.69}=\frac{6771-13y}{0.69\times 25}
Divide both sides of the equation by 0.69, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{6771-13y}{0.69\times 25}
Dividing by 0.69 undoes the multiplication by 0.69.
x=-\frac{52y}{69}+\frac{9028}{23}
Divide \frac{6771-13y}{25} by 0.69 by multiplying \frac{6771-13y}{25} by the reciprocal of 0.69.
0.52y=270.84-0.69x
Subtract 0.69x from both sides.
0.52y=-\frac{69x}{100}+270.84
The equation is in standard form.
\frac{0.52y}{0.52}=\frac{-\frac{69x}{100}+270.84}{0.52}
Divide both sides of the equation by 0.52, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{69x}{100}+270.84}{0.52}
Dividing by 0.52 undoes the multiplication by 0.52.
y=-\frac{69x}{52}+\frac{6771}{13}
Divide 270.84-\frac{69x}{100} by 0.52 by multiplying 270.84-\frac{69x}{100} by the reciprocal of 0.52.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}