Solve for x (complex solution)
x=-\frac{i\sqrt{2621431}}{2400000}\approx -0-0.000674618i
x=\frac{i\sqrt{2621431}}{2400000}\approx 0.000674618i
Graph
Quiz
Algebra
0.64 = 9 \times 10 ^ { 5 } \times \frac { 1.5625 \times 10 ^ { - 12 } - x ^ { 2 } } { 0.64 }
Share
Copied to clipboard
0.64=9\times 100000\times \frac{1.5625\times 10^{-12}-x^{2}}{0.64}
Calculate 10 to the power of 5 and get 100000.
0.64=900000\times \frac{1.5625\times 10^{-12}-x^{2}}{0.64}
Multiply 9 and 100000 to get 900000.
0.64=900000\times \frac{1.5625\times \frac{1}{1000000000000}-x^{2}}{0.64}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
0.64=900000\times \frac{\frac{1}{640000000000}-x^{2}}{0.64}
Multiply 1.5625 and \frac{1}{1000000000000} to get \frac{1}{640000000000}.
0.64=900000\left(\frac{\frac{1}{640000000000}}{0.64}+\frac{-x^{2}}{0.64}\right)
Divide each term of \frac{1}{640000000000}-x^{2} by 0.64 to get \frac{\frac{1}{640000000000}}{0.64}+\frac{-x^{2}}{0.64}.
0.64=900000\left(\frac{1}{640000000000\times 0.64}+\frac{-x^{2}}{0.64}\right)
Express \frac{\frac{1}{640000000000}}{0.64} as a single fraction.
0.64=900000\left(\frac{1}{409600000000}+\frac{-x^{2}}{0.64}\right)
Multiply 640000000000 and 0.64 to get 409600000000.
0.64=900000\left(\frac{1}{409600000000}-1.5625x^{2}\right)
Divide -x^{2} by 0.64 to get -1.5625x^{2}.
0.64=\frac{9}{4096000}-1406250x^{2}
Use the distributive property to multiply 900000 by \frac{1}{409600000000}-1.5625x^{2}.
\frac{9}{4096000}-1406250x^{2}=0.64
Swap sides so that all variable terms are on the left hand side.
-1406250x^{2}=0.64-\frac{9}{4096000}
Subtract \frac{9}{4096000} from both sides.
-1406250x^{2}=\frac{2621431}{4096000}
Subtract \frac{9}{4096000} from 0.64 to get \frac{2621431}{4096000}.
x^{2}=\frac{\frac{2621431}{4096000}}{-1406250}
Divide both sides by -1406250.
x^{2}=\frac{2621431}{4096000\left(-1406250\right)}
Express \frac{\frac{2621431}{4096000}}{-1406250} as a single fraction.
x^{2}=\frac{2621431}{-5760000000000}
Multiply 4096000 and -1406250 to get -5760000000000.
x^{2}=-\frac{2621431}{5760000000000}
Fraction \frac{2621431}{-5760000000000} can be rewritten as -\frac{2621431}{5760000000000} by extracting the negative sign.
x=\frac{\sqrt{2621431}i}{2400000} x=-\frac{\sqrt{2621431}i}{2400000}
The equation is now solved.
0.64=9\times 100000\times \frac{1.5625\times 10^{-12}-x^{2}}{0.64}
Calculate 10 to the power of 5 and get 100000.
0.64=900000\times \frac{1.5625\times 10^{-12}-x^{2}}{0.64}
Multiply 9 and 100000 to get 900000.
0.64=900000\times \frac{1.5625\times \frac{1}{1000000000000}-x^{2}}{0.64}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
0.64=900000\times \frac{\frac{1}{640000000000}-x^{2}}{0.64}
Multiply 1.5625 and \frac{1}{1000000000000} to get \frac{1}{640000000000}.
0.64=900000\left(\frac{\frac{1}{640000000000}}{0.64}+\frac{-x^{2}}{0.64}\right)
Divide each term of \frac{1}{640000000000}-x^{2} by 0.64 to get \frac{\frac{1}{640000000000}}{0.64}+\frac{-x^{2}}{0.64}.
0.64=900000\left(\frac{1}{640000000000\times 0.64}+\frac{-x^{2}}{0.64}\right)
Express \frac{\frac{1}{640000000000}}{0.64} as a single fraction.
0.64=900000\left(\frac{1}{409600000000}+\frac{-x^{2}}{0.64}\right)
Multiply 640000000000 and 0.64 to get 409600000000.
0.64=900000\left(\frac{1}{409600000000}-1.5625x^{2}\right)
Divide -x^{2} by 0.64 to get -1.5625x^{2}.
0.64=\frac{9}{4096000}-1406250x^{2}
Use the distributive property to multiply 900000 by \frac{1}{409600000000}-1.5625x^{2}.
\frac{9}{4096000}-1406250x^{2}=0.64
Swap sides so that all variable terms are on the left hand side.
\frac{9}{4096000}-1406250x^{2}-0.64=0
Subtract 0.64 from both sides.
-\frac{2621431}{4096000}-1406250x^{2}=0
Subtract 0.64 from \frac{9}{4096000} to get -\frac{2621431}{4096000}.
-1406250x^{2}-\frac{2621431}{4096000}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1406250\right)\left(-\frac{2621431}{4096000}\right)}}{2\left(-1406250\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1406250 for a, 0 for b, and -\frac{2621431}{4096000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1406250\right)\left(-\frac{2621431}{4096000}\right)}}{2\left(-1406250\right)}
Square 0.
x=\frac{0±\sqrt{5625000\left(-\frac{2621431}{4096000}\right)}}{2\left(-1406250\right)}
Multiply -4 times -1406250.
x=\frac{0±\sqrt{-\frac{14745549375}{4096}}}{2\left(-1406250\right)}
Multiply 5625000 times -\frac{2621431}{4096000}.
x=\frac{0±\frac{75\sqrt{2621431}i}{64}}{2\left(-1406250\right)}
Take the square root of -\frac{14745549375}{4096}.
x=\frac{0±\frac{75\sqrt{2621431}i}{64}}{-2812500}
Multiply 2 times -1406250.
x=-\frac{\sqrt{2621431}i}{2400000}
Now solve the equation x=\frac{0±\frac{75\sqrt{2621431}i}{64}}{-2812500} when ± is plus.
x=\frac{\sqrt{2621431}i}{2400000}
Now solve the equation x=\frac{0±\frac{75\sqrt{2621431}i}{64}}{-2812500} when ± is minus.
x=-\frac{\sqrt{2621431}i}{2400000} x=\frac{\sqrt{2621431}i}{2400000}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}