Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

0.64=t^{2}
Multiply \frac{1}{2} and 2 to get 1.
t^{2}=0.64
Swap sides so that all variable terms are on the left hand side.
t^{2}-0.64=0
Subtract 0.64 from both sides.
\left(t-\frac{4}{5}\right)\left(t+\frac{4}{5}\right)=0
Consider t^{2}-0.64. Rewrite t^{2}-0.64 as t^{2}-\left(\frac{4}{5}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
t=\frac{4}{5} t=-\frac{4}{5}
To find equation solutions, solve t-\frac{4}{5}=0 and t+\frac{4}{5}=0.
0.64=t^{2}
Multiply \frac{1}{2} and 2 to get 1.
t^{2}=0.64
Swap sides so that all variable terms are on the left hand side.
t=\frac{4}{5} t=-\frac{4}{5}
Take the square root of both sides of the equation.
0.64=t^{2}
Multiply \frac{1}{2} and 2 to get 1.
t^{2}=0.64
Swap sides so that all variable terms are on the left hand side.
t^{2}-0.64=0
Subtract 0.64 from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-0.64\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -0.64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-0.64\right)}}{2}
Square 0.
t=\frac{0±\sqrt{2.56}}{2}
Multiply -4 times -0.64.
t=\frac{0±\frac{8}{5}}{2}
Take the square root of 2.56.
t=\frac{4}{5}
Now solve the equation t=\frac{0±\frac{8}{5}}{2} when ± is plus.
t=-\frac{4}{5}
Now solve the equation t=\frac{0±\frac{8}{5}}{2} when ± is minus.
t=\frac{4}{5} t=-\frac{4}{5}
The equation is now solved.