Solve for x
x = \frac{42080 \sqrt{249} + 1992000}{553331} \approx 4.800040482
Graph
Share
Copied to clipboard
0.6=2x\left(\frac{0.4}{1+0.6}-\frac{263}{\sqrt{9.96\times 10^{6}}}\right)-1
Subtract 0.6 from 1 to get 0.4.
0.6=2x\left(\frac{0.4}{1.6}-\frac{263}{\sqrt{9.96\times 10^{6}}}\right)-1
Add 1 and 0.6 to get 1.6.
0.6=2x\left(\frac{4}{16}-\frac{263}{\sqrt{9.96\times 10^{6}}}\right)-1
Expand \frac{0.4}{1.6} by multiplying both numerator and the denominator by 10.
0.6=2x\left(\frac{1}{4}-\frac{263}{\sqrt{9.96\times 10^{6}}}\right)-1
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
0.6=2x\left(\frac{1}{4}-\frac{263}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.6=2x\left(\frac{1}{4}-\frac{263}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.6=2x\left(\frac{1}{4}-\frac{263}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.6=2x\left(\frac{1}{4}-\frac{263\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{263}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.6=2x\left(\frac{1}{4}-\frac{263\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.6=2x\left(\frac{1}{4}-\frac{263\sqrt{249}}{49800}\right)-1
Multiply 200 and 249 to get 49800.
0.6=2x\left(\frac{12450}{49800}-\frac{263\sqrt{249}}{49800}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 49800 is 49800. Multiply \frac{1}{4} times \frac{12450}{12450}.
0.6=2x\times \frac{12450-263\sqrt{249}}{49800}-1
Since \frac{12450}{49800} and \frac{263\sqrt{249}}{49800} have the same denominator, subtract them by subtracting their numerators.
0.6=\frac{12450-263\sqrt{249}}{24900}x-1
Cancel out 49800, the greatest common factor in 2 and 49800.
0.6=\left(\frac{1}{2}-\frac{263}{24900}\sqrt{249}\right)x-1
Divide each term of 12450-263\sqrt{249} by 24900 to get \frac{1}{2}-\frac{263}{24900}\sqrt{249}.
0.6=\frac{1}{2}x-\frac{263}{24900}\sqrt{249}x-1
Use the distributive property to multiply \frac{1}{2}-\frac{263}{24900}\sqrt{249} by x.
\frac{1}{2}x-\frac{263}{24900}\sqrt{249}x-1=0.6
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}x-\frac{263}{24900}\sqrt{249}x=0.6+1
Add 1 to both sides.
\frac{1}{2}x-\frac{263}{24900}\sqrt{249}x=1.6
Add 0.6 and 1 to get 1.6.
\left(\frac{1}{2}-\frac{263}{24900}\sqrt{249}\right)x=1.6
Combine all terms containing x.
\left(-\frac{263\sqrt{249}}{24900}+\frac{1}{2}\right)x=\frac{8}{5}
The equation is in standard form.
\frac{\left(-\frac{263\sqrt{249}}{24900}+\frac{1}{2}\right)x}{-\frac{263\sqrt{249}}{24900}+\frac{1}{2}}=\frac{\frac{8}{5}}{-\frac{263\sqrt{249}}{24900}+\frac{1}{2}}
Divide both sides by \frac{1}{2}-\frac{263}{24900}\sqrt{249}.
x=\frac{\frac{8}{5}}{-\frac{263\sqrt{249}}{24900}+\frac{1}{2}}
Dividing by \frac{1}{2}-\frac{263}{24900}\sqrt{249} undoes the multiplication by \frac{1}{2}-\frac{263}{24900}\sqrt{249}.
x=\frac{42080\sqrt{249}+1992000}{553331}
Divide \frac{8}{5} by \frac{1}{2}-\frac{263}{24900}\sqrt{249}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}