Solve for x
x=\frac{-8y-22}{45}
Solve for y
y=-\frac{45x}{8}-2.75
Graph
Share
Copied to clipboard
-\frac{9}{4}x-0.4y=1.1
Multiply 0.6 and -\frac{15}{4} to get -\frac{9}{4}.
-\frac{9}{4}x=1.1+0.4y
Add 0.4y to both sides.
-\frac{9}{4}x=\frac{2y}{5}+1.1
The equation is in standard form.
\frac{-\frac{9}{4}x}{-\frac{9}{4}}=\frac{\frac{2y}{5}+1.1}{-\frac{9}{4}}
Divide both sides of the equation by -\frac{9}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{2y}{5}+1.1}{-\frac{9}{4}}
Dividing by -\frac{9}{4} undoes the multiplication by -\frac{9}{4}.
x=\frac{-8y-22}{45}
Divide 1.1+\frac{2y}{5} by -\frac{9}{4} by multiplying 1.1+\frac{2y}{5} by the reciprocal of -\frac{9}{4}.
-\frac{9}{4}x-0.4y=1.1
Multiply 0.6 and -\frac{15}{4} to get -\frac{9}{4}.
-0.4y=1.1+\frac{9}{4}x
Add \frac{9}{4}x to both sides.
-0.4y=\frac{9x}{4}+1.1
The equation is in standard form.
\frac{-0.4y}{-0.4}=\frac{\frac{9x}{4}+\frac{11}{10}}{-0.4}
Divide both sides of the equation by -0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{9x}{4}+\frac{11}{10}}{-0.4}
Dividing by -0.4 undoes the multiplication by -0.4.
y=-\frac{45x}{8}-\frac{11}{4}
Divide \frac{11}{10}+\frac{9x}{4} by -0.4 by multiplying \frac{11}{10}+\frac{9x}{4} by the reciprocal of -0.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}