Solve for t
t=-0.51
t=0.6
Share
Copied to clipboard
0.6t-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-2.04
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
0.6t-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-2.04
Multiply 5 and \frac{160}{3} to get \frac{800}{3}.
0.6t-\frac{\frac{800}{3}}{4\times 10}t^{2}=-2.04
Calculate 10 to the power of 1 and get 10.
0.6t-\frac{\frac{800}{3}}{40}t^{2}=-2.04
Multiply 4 and 10 to get 40.
0.6t-\frac{800}{3\times 40}t^{2}=-2.04
Express \frac{\frac{800}{3}}{40} as a single fraction.
0.6t-\frac{800}{120}t^{2}=-2.04
Multiply 3 and 40 to get 120.
0.6t-\frac{20}{3}t^{2}=-2.04
Reduce the fraction \frac{800}{120} to lowest terms by extracting and canceling out 40.
0.6t-\frac{20}{3}t^{2}+2.04=0
Add 2.04 to both sides.
-\frac{20}{3}t^{2}+\frac{3}{5}t+2.04=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\frac{3}{5}±\sqrt{\left(\frac{3}{5}\right)^{2}-4\left(-\frac{20}{3}\right)\times 2.04}}{2\left(-\frac{20}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{20}{3} for a, \frac{3}{5} for b, and 2.04 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}-4\left(-\frac{20}{3}\right)\times 2.04}}{2\left(-\frac{20}{3}\right)}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}+\frac{80}{3}\times 2.04}}{2\left(-\frac{20}{3}\right)}
Multiply -4 times -\frac{20}{3}.
t=\frac{-\frac{3}{5}±\sqrt{\frac{9}{25}+\frac{272}{5}}}{2\left(-\frac{20}{3}\right)}
Multiply \frac{80}{3} times 2.04 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-\frac{3}{5}±\sqrt{\frac{1369}{25}}}{2\left(-\frac{20}{3}\right)}
Add \frac{9}{25} to \frac{272}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-\frac{3}{5}±\frac{37}{5}}{2\left(-\frac{20}{3}\right)}
Take the square root of \frac{1369}{25}.
t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}}
Multiply 2 times -\frac{20}{3}.
t=\frac{\frac{34}{5}}{-\frac{40}{3}}
Now solve the equation t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}} when ± is plus. Add -\frac{3}{5} to \frac{37}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=-\frac{51}{100}
Divide \frac{34}{5} by -\frac{40}{3} by multiplying \frac{34}{5} by the reciprocal of -\frac{40}{3}.
t=-\frac{8}{-\frac{40}{3}}
Now solve the equation t=\frac{-\frac{3}{5}±\frac{37}{5}}{-\frac{40}{3}} when ± is minus. Subtract \frac{37}{5} from -\frac{3}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{3}{5}
Divide -8 by -\frac{40}{3} by multiplying -8 by the reciprocal of -\frac{40}{3}.
t=-\frac{51}{100} t=\frac{3}{5}
The equation is now solved.
0.6t-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-2.04
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
0.6t-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-2.04
Multiply 5 and \frac{160}{3} to get \frac{800}{3}.
0.6t-\frac{\frac{800}{3}}{4\times 10}t^{2}=-2.04
Calculate 10 to the power of 1 and get 10.
0.6t-\frac{\frac{800}{3}}{40}t^{2}=-2.04
Multiply 4 and 10 to get 40.
0.6t-\frac{800}{3\times 40}t^{2}=-2.04
Express \frac{\frac{800}{3}}{40} as a single fraction.
0.6t-\frac{800}{120}t^{2}=-2.04
Multiply 3 and 40 to get 120.
0.6t-\frac{20}{3}t^{2}=-2.04
Reduce the fraction \frac{800}{120} to lowest terms by extracting and canceling out 40.
-\frac{20}{3}t^{2}+\frac{3}{5}t=-2.04
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{20}{3}t^{2}+\frac{3}{5}t}{-\frac{20}{3}}=-\frac{2.04}{-\frac{20}{3}}
Divide both sides of the equation by -\frac{20}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{\frac{3}{5}}{-\frac{20}{3}}t=-\frac{2.04}{-\frac{20}{3}}
Dividing by -\frac{20}{3} undoes the multiplication by -\frac{20}{3}.
t^{2}-\frac{9}{100}t=-\frac{2.04}{-\frac{20}{3}}
Divide \frac{3}{5} by -\frac{20}{3} by multiplying \frac{3}{5} by the reciprocal of -\frac{20}{3}.
t^{2}-\frac{9}{100}t=\frac{153}{500}
Divide -2.04 by -\frac{20}{3} by multiplying -2.04 by the reciprocal of -\frac{20}{3}.
t^{2}-\frac{9}{100}t+\left(-\frac{9}{200}\right)^{2}=\frac{153}{500}+\left(-\frac{9}{200}\right)^{2}
Divide -\frac{9}{100}, the coefficient of the x term, by 2 to get -\frac{9}{200}. Then add the square of -\frac{9}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{9}{100}t+\frac{81}{40000}=\frac{153}{500}+\frac{81}{40000}
Square -\frac{9}{200} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{9}{100}t+\frac{81}{40000}=\frac{12321}{40000}
Add \frac{153}{500} to \frac{81}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{9}{200}\right)^{2}=\frac{12321}{40000}
Factor t^{2}-\frac{9}{100}t+\frac{81}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{9}{200}\right)^{2}}=\sqrt{\frac{12321}{40000}}
Take the square root of both sides of the equation.
t-\frac{9}{200}=\frac{111}{200} t-\frac{9}{200}=-\frac{111}{200}
Simplify.
t=\frac{3}{5} t=-\frac{51}{100}
Add \frac{9}{200} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}