Evaluate
-0.55
Factor
-0.55
Share
Copied to clipboard
0.6-\sqrt{\frac{16+9}{16}}+\sqrt{\frac{1}{100}}
Multiply 1 and 16 to get 16.
0.6-\sqrt{\frac{25}{16}}+\sqrt{\frac{1}{100}}
Add 16 and 9 to get 25.
0.6-\frac{5}{4}+\sqrt{\frac{1}{100}}
Rewrite the square root of the division \frac{25}{16} as the division of square roots \frac{\sqrt{25}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{3}{5}-\frac{5}{4}+\sqrt{\frac{1}{100}}
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{20}-\frac{25}{20}+\sqrt{\frac{1}{100}}
Least common multiple of 5 and 4 is 20. Convert \frac{3}{5} and \frac{5}{4} to fractions with denominator 20.
\frac{12-25}{20}+\sqrt{\frac{1}{100}}
Since \frac{12}{20} and \frac{25}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{20}+\sqrt{\frac{1}{100}}
Subtract 25 from 12 to get -13.
-\frac{13}{20}+\frac{1}{10}
Rewrite the square root of the division \frac{1}{100} as the division of square roots \frac{\sqrt{1}}{\sqrt{100}}. Take the square root of both numerator and denominator.
-\frac{13}{20}+\frac{2}{20}
Least common multiple of 20 and 10 is 20. Convert -\frac{13}{20} and \frac{1}{10} to fractions with denominator 20.
\frac{-13+2}{20}
Since -\frac{13}{20} and \frac{2}{20} have the same denominator, add them by adding their numerators.
-\frac{11}{20}
Add -13 and 2 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}