Solve for y
y=-8.375
Graph
Share
Copied to clipboard
\frac{3}{5}\left(-\frac{15}{4}\right)-0.4y=1.1
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{3\left(-15\right)}{5\times 4}-0.4y=1.1
Multiply \frac{3}{5} times -\frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-45}{20}-0.4y=1.1
Do the multiplications in the fraction \frac{3\left(-15\right)}{5\times 4}.
-\frac{9}{4}-0.4y=1.1
Reduce the fraction \frac{-45}{20} to lowest terms by extracting and canceling out 5.
-0.4y=1.1+\frac{9}{4}
Add \frac{9}{4} to both sides.
-0.4y=\frac{11}{10}+\frac{9}{4}
Convert decimal number 1.1 to fraction \frac{11}{10}.
-0.4y=\frac{22}{20}+\frac{45}{20}
Least common multiple of 10 and 4 is 20. Convert \frac{11}{10} and \frac{9}{4} to fractions with denominator 20.
-0.4y=\frac{22+45}{20}
Since \frac{22}{20} and \frac{45}{20} have the same denominator, add them by adding their numerators.
-0.4y=\frac{67}{20}
Add 22 and 45 to get 67.
y=\frac{\frac{67}{20}}{-0.4}
Divide both sides by -0.4.
y=\frac{67}{20\left(-0.4\right)}
Express \frac{\frac{67}{20}}{-0.4} as a single fraction.
y=\frac{67}{-8}
Multiply 20 and -0.4 to get -8.
y=-\frac{67}{8}
Fraction \frac{67}{-8} can be rewritten as -\frac{67}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}