Solve for w
w=\frac{x\left(325-3x\right)}{250}
Solve for x (complex solution)
x=\frac{-5\sqrt{4225-120w}+325}{6}
x=\frac{5\sqrt{4225-120w}+325}{6}
Solve for x
x=\frac{-5\sqrt{4225-120w}+325}{6}
x=\frac{5\sqrt{4225-120w}+325}{6}\text{, }w\leq \frac{845}{24}
Graph
Share
Copied to clipboard
24\left(1-\frac{4}{300}w\right)+0.4\left(90\left(1+\frac{1}{3}\right)-60\left(1+\frac{2}{300}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Multiply 0.6 and 40 to get 24.
24\left(1-\frac{1}{75}w\right)+0.4\left(90\left(1+\frac{1}{3}\right)-60\left(1+\frac{2}{300}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Reduce the fraction \frac{4}{300} to lowest terms by extracting and canceling out 4.
24-\frac{8}{25}w+0.4\left(90\left(1+\frac{1}{3}\right)-60\left(1+\frac{2}{300}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Use the distributive property to multiply 24 by 1-\frac{1}{75}w.
24-\frac{8}{25}w+0.4\left(90\times \frac{4}{3}-60\left(1+\frac{2}{300}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Add 1 and \frac{1}{3} to get \frac{4}{3}.
24-\frac{8}{25}w+0.4\left(120-60\left(1+\frac{2}{300}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Multiply 90 and \frac{4}{3} to get 120.
24-\frac{8}{25}w+0.4\left(120-60\left(1+\frac{1}{150}x\right)\right)\left(1+\frac{12}{500}x\right)=24+24
Reduce the fraction \frac{2}{300} to lowest terms by extracting and canceling out 2.
24-\frac{8}{25}w+0.4\left(120-60-\frac{2}{5}x\right)\left(1+\frac{12}{500}x\right)=24+24
Use the distributive property to multiply -60 by 1+\frac{1}{150}x.
24-\frac{8}{25}w+0.4\left(60-\frac{2}{5}x\right)\left(1+\frac{12}{500}x\right)=24+24
Subtract 60 from 120 to get 60.
24-\frac{8}{25}w+0.4\left(60-\frac{2}{5}x\right)\left(1+\frac{3}{125}x\right)=24+24
Reduce the fraction \frac{12}{500} to lowest terms by extracting and canceling out 4.
24-\frac{8}{25}w+\left(24-\frac{4}{25}x\right)\left(1+\frac{3}{125}x\right)=24+24
Use the distributive property to multiply 0.4 by 60-\frac{2}{5}x.
24-\frac{8}{25}w+24+\frac{52}{125}x-\frac{12}{3125}x^{2}=24+24
Use the distributive property to multiply 24-\frac{4}{25}x by 1+\frac{3}{125}x and combine like terms.
48-\frac{8}{25}w+\frac{52}{125}x-\frac{12}{3125}x^{2}=24+24
Add 24 and 24 to get 48.
48-\frac{8}{25}w+\frac{52}{125}x-\frac{12}{3125}x^{2}=48
Add 24 and 24 to get 48.
-\frac{8}{25}w+\frac{52}{125}x-\frac{12}{3125}x^{2}=48-48
Subtract 48 from both sides.
-\frac{8}{25}w+\frac{52}{125}x-\frac{12}{3125}x^{2}=0
Subtract 48 from 48 to get 0.
-\frac{8}{25}w-\frac{12}{3125}x^{2}=-\frac{52}{125}x
Subtract \frac{52}{125}x from both sides. Anything subtracted from zero gives its negation.
-\frac{8}{25}w=-\frac{52}{125}x+\frac{12}{3125}x^{2}
Add \frac{12}{3125}x^{2} to both sides.
-\frac{8}{25}w=\frac{12x^{2}}{3125}-\frac{52x}{125}
The equation is in standard form.
\frac{-\frac{8}{25}w}{-\frac{8}{25}}=\frac{4x\left(3x-325\right)}{-\frac{8}{25}\times 3125}
Divide both sides of the equation by -\frac{8}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
w=\frac{4x\left(3x-325\right)}{-\frac{8}{25}\times 3125}
Dividing by -\frac{8}{25} undoes the multiplication by -\frac{8}{25}.
w=-\frac{3x^{2}}{250}+\frac{13x}{10}
Divide \frac{4x\left(-325+3x\right)}{3125} by -\frac{8}{25} by multiplying \frac{4x\left(-325+3x\right)}{3125} by the reciprocal of -\frac{8}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}