Solve for x
x = \frac{3 \sqrt{185} - 1}{16} \approx 2.48777572
x=\frac{-3\sqrt{185}-1}{16}\approx -2.61277572
Graph
Share
Copied to clipboard
4x^{2}+\frac{1}{2}x=26
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
4x^{2}+\frac{1}{2}x-26=26-26
Subtract 26 from both sides of the equation.
4x^{2}+\frac{1}{2}x-26=0
Subtracting 26 from itself leaves 0.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times 4\left(-26\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, \frac{1}{2} for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times 4\left(-26\right)}}{2\times 4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-16\left(-26\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+416}}{2\times 4}
Multiply -16 times -26.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1665}{4}}}{2\times 4}
Add \frac{1}{4} to 416.
x=\frac{-\frac{1}{2}±\frac{3\sqrt{185}}{2}}{2\times 4}
Take the square root of \frac{1665}{4}.
x=\frac{-\frac{1}{2}±\frac{3\sqrt{185}}{2}}{8}
Multiply 2 times 4.
x=\frac{3\sqrt{185}-1}{2\times 8}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{3\sqrt{185}}{2}}{8} when ± is plus. Add -\frac{1}{2} to \frac{3\sqrt{185}}{2}.
x=\frac{3\sqrt{185}-1}{16}
Divide \frac{-1+3\sqrt{185}}{2} by 8.
x=\frac{-3\sqrt{185}-1}{2\times 8}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{3\sqrt{185}}{2}}{8} when ± is minus. Subtract \frac{3\sqrt{185}}{2} from -\frac{1}{2}.
x=\frac{-3\sqrt{185}-1}{16}
Divide \frac{-1-3\sqrt{185}}{2} by 8.
x=\frac{3\sqrt{185}-1}{16} x=\frac{-3\sqrt{185}-1}{16}
The equation is now solved.
4x^{2}+\frac{1}{2}x=26
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+\frac{1}{2}x}{4}=\frac{26}{4}
Divide both sides by 4.
x^{2}+\frac{\frac{1}{2}}{4}x=\frac{26}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{8}x=\frac{26}{4}
Divide \frac{1}{2} by 4.
x^{2}+\frac{1}{8}x=\frac{13}{2}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{8}x+\left(\frac{1}{16}\right)^{2}=\frac{13}{2}+\left(\frac{1}{16}\right)^{2}
Divide \frac{1}{8}, the coefficient of the x term, by 2 to get \frac{1}{16}. Then add the square of \frac{1}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{13}{2}+\frac{1}{256}
Square \frac{1}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{1665}{256}
Add \frac{13}{2} to \frac{1}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{16}\right)^{2}=\frac{1665}{256}
Factor x^{2}+\frac{1}{8}x+\frac{1}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{16}\right)^{2}}=\sqrt{\frac{1665}{256}}
Take the square root of both sides of the equation.
x+\frac{1}{16}=\frac{3\sqrt{185}}{16} x+\frac{1}{16}=-\frac{3\sqrt{185}}{16}
Simplify.
x=\frac{3\sqrt{185}-1}{16} x=\frac{-3\sqrt{185}-1}{16}
Subtract \frac{1}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}