Solve for x (complex solution)
x=2+8i
x=2-8i
Graph
Share
Copied to clipboard
\left(0.5x+3\right)^{2}=\left(2\sqrt{x-2}\right)^{2}
Square both sides of the equation.
0.25x^{2}+3x+9=\left(2\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(0.5x+3\right)^{2}.
0.25x^{2}+3x+9=2^{2}\left(\sqrt{x-2}\right)^{2}
Expand \left(2\sqrt{x-2}\right)^{2}.
0.25x^{2}+3x+9=4\left(\sqrt{x-2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
0.25x^{2}+3x+9=4\left(x-2\right)
Calculate \sqrt{x-2} to the power of 2 and get x-2.
0.25x^{2}+3x+9=4x-8
Use the distributive property to multiply 4 by x-2.
0.25x^{2}+3x+9-4x=-8
Subtract 4x from both sides.
0.25x^{2}-x+9=-8
Combine 3x and -4x to get -x.
0.25x^{2}-x+9+8=0
Add 8 to both sides.
0.25x^{2}-x+17=0
Add 9 and 8 to get 17.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 0.25\times 17}}{2\times 0.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.25 for a, -1 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-17}}{2\times 0.25}
Multiply -4 times 0.25.
x=\frac{-\left(-1\right)±\sqrt{-16}}{2\times 0.25}
Add 1 to -17.
x=\frac{-\left(-1\right)±4i}{2\times 0.25}
Take the square root of -16.
x=\frac{1±4i}{2\times 0.25}
The opposite of -1 is 1.
x=\frac{1±4i}{0.5}
Multiply 2 times 0.25.
x=\frac{1+4i}{0.5}
Now solve the equation x=\frac{1±4i}{0.5} when ± is plus. Add 1 to 4i.
x=2+8i
Divide 1+4i by 0.5 by multiplying 1+4i by the reciprocal of 0.5.
x=\frac{1-4i}{0.5}
Now solve the equation x=\frac{1±4i}{0.5} when ± is minus. Subtract 4i from 1.
x=2-8i
Divide 1-4i by 0.5 by multiplying 1-4i by the reciprocal of 0.5.
x=2+8i x=2-8i
The equation is now solved.
0.5\left(2+8i\right)+3=2\sqrt{2+8i-2}
Substitute 2+8i for x in the equation 0.5x+3=2\sqrt{x-2}.
4+4i=4+4i
Simplify. The value x=2+8i satisfies the equation.
0.5\left(2-8i\right)+3=2\sqrt{2-8i-2}
Substitute 2-8i for x in the equation 0.5x+3=2\sqrt{x-2}.
4-4i=4-4i
Simplify. The value x=2-8i satisfies the equation.
x=2+8i x=2-8i
List all solutions of \frac{x}{2}+3=2\sqrt{x-2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}