Solve for c (complex solution)
\left\{\begin{matrix}\\c=\frac{20m}{11}\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}\\c=\frac{20m}{11}\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
m=0
m=\frac{11c}{20}
Share
Copied to clipboard
0.55cm^{2}=m^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{11m^{2}}{20}c=m^{3}
The equation is in standard form.
\frac{20\times \frac{11m^{2}}{20}c}{11m^{2}}=\frac{20m^{3}}{11m^{2}}
Divide both sides by 0.55m^{2}.
c=\frac{20m^{3}}{11m^{2}}
Dividing by 0.55m^{2} undoes the multiplication by 0.55m^{2}.
c=\frac{20m}{11}
Divide m^{3} by 0.55m^{2}.
0.55cm^{2}=m^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{11m^{2}}{20}c=m^{3}
The equation is in standard form.
\frac{20\times \frac{11m^{2}}{20}c}{11m^{2}}=\frac{20m^{3}}{11m^{2}}
Divide both sides by 0.55m^{2}.
c=\frac{20m^{3}}{11m^{2}}
Dividing by 0.55m^{2} undoes the multiplication by 0.55m^{2}.
c=\frac{20m}{11}
Divide m^{3} by 0.55m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}