Skip to main content
Solve for L
Tick mark Image

Similar Problems from Web Search

Share

\frac{L^{2}\times 35\times 100}{0.5}=\frac{400}{0.55}
Divide both sides by 0.55.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{40000}{55}
Expand \frac{400}{0.55} by multiplying both numerator and the denominator by 100.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{8000}{11}
Reduce the fraction \frac{40000}{55} to lowest terms by extracting and canceling out 5.
L^{2}\times 35\times 100=\frac{8000}{11}\times 0.5
Multiply both sides by 0.5.
L^{2}\times 3500=\frac{8000}{11}\times 0.5
Multiply 35 and 100 to get 3500.
L^{2}\times 3500=\frac{4000}{11}
Multiply \frac{8000}{11} and 0.5 to get \frac{4000}{11}.
L^{2}=\frac{\frac{4000}{11}}{3500}
Divide both sides by 3500.
L^{2}=\frac{4000}{11\times 3500}
Express \frac{\frac{4000}{11}}{3500} as a single fraction.
L^{2}=\frac{4000}{38500}
Multiply 11 and 3500 to get 38500.
L^{2}=\frac{8}{77}
Reduce the fraction \frac{4000}{38500} to lowest terms by extracting and canceling out 500.
L=\frac{2\sqrt{154}}{77} L=-\frac{2\sqrt{154}}{77}
Take the square root of both sides of the equation.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{400}{0.55}
Divide both sides by 0.55.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{40000}{55}
Expand \frac{400}{0.55} by multiplying both numerator and the denominator by 100.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{8000}{11}
Reduce the fraction \frac{40000}{55} to lowest terms by extracting and canceling out 5.
L^{2}\times 35\times 100=\frac{8000}{11}\times 0.5
Multiply both sides by 0.5.
L^{2}\times 3500=\frac{8000}{11}\times 0.5
Multiply 35 and 100 to get 3500.
L^{2}\times 3500=\frac{4000}{11}
Multiply \frac{8000}{11} and 0.5 to get \frac{4000}{11}.
L^{2}\times 3500-\frac{4000}{11}=0
Subtract \frac{4000}{11} from both sides.
3500L^{2}-\frac{4000}{11}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
L=\frac{0±\sqrt{0^{2}-4\times 3500\left(-\frac{4000}{11}\right)}}{2\times 3500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3500 for a, 0 for b, and -\frac{4000}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{0±\sqrt{-4\times 3500\left(-\frac{4000}{11}\right)}}{2\times 3500}
Square 0.
L=\frac{0±\sqrt{-14000\left(-\frac{4000}{11}\right)}}{2\times 3500}
Multiply -4 times 3500.
L=\frac{0±\sqrt{\frac{56000000}{11}}}{2\times 3500}
Multiply -14000 times -\frac{4000}{11}.
L=\frac{0±\frac{2000\sqrt{154}}{11}}{2\times 3500}
Take the square root of \frac{56000000}{11}.
L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000}
Multiply 2 times 3500.
L=\frac{2\sqrt{154}}{77}
Now solve the equation L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000} when ± is plus.
L=-\frac{2\sqrt{154}}{77}
Now solve the equation L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000} when ± is minus.
L=\frac{2\sqrt{154}}{77} L=-\frac{2\sqrt{154}}{77}
The equation is now solved.