Solve for L
L=\frac{2\sqrt{154}}{77}\approx 0.322329186
L=-\frac{2\sqrt{154}}{77}\approx -0.322329186
Share
Copied to clipboard
\frac{L^{2}\times 35\times 100}{0.5}=\frac{400}{0.55}
Divide both sides by 0.55.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{40000}{55}
Expand \frac{400}{0.55} by multiplying both numerator and the denominator by 100.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{8000}{11}
Reduce the fraction \frac{40000}{55} to lowest terms by extracting and canceling out 5.
L^{2}\times 35\times 100=\frac{8000}{11}\times 0.5
Multiply both sides by 0.5.
L^{2}\times 3500=\frac{8000}{11}\times 0.5
Multiply 35 and 100 to get 3500.
L^{2}\times 3500=\frac{4000}{11}
Multiply \frac{8000}{11} and 0.5 to get \frac{4000}{11}.
L^{2}=\frac{\frac{4000}{11}}{3500}
Divide both sides by 3500.
L^{2}=\frac{4000}{11\times 3500}
Express \frac{\frac{4000}{11}}{3500} as a single fraction.
L^{2}=\frac{4000}{38500}
Multiply 11 and 3500 to get 38500.
L^{2}=\frac{8}{77}
Reduce the fraction \frac{4000}{38500} to lowest terms by extracting and canceling out 500.
L=\frac{2\sqrt{154}}{77} L=-\frac{2\sqrt{154}}{77}
Take the square root of both sides of the equation.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{400}{0.55}
Divide both sides by 0.55.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{40000}{55}
Expand \frac{400}{0.55} by multiplying both numerator and the denominator by 100.
\frac{L^{2}\times 35\times 100}{0.5}=\frac{8000}{11}
Reduce the fraction \frac{40000}{55} to lowest terms by extracting and canceling out 5.
L^{2}\times 35\times 100=\frac{8000}{11}\times 0.5
Multiply both sides by 0.5.
L^{2}\times 3500=\frac{8000}{11}\times 0.5
Multiply 35 and 100 to get 3500.
L^{2}\times 3500=\frac{4000}{11}
Multiply \frac{8000}{11} and 0.5 to get \frac{4000}{11}.
L^{2}\times 3500-\frac{4000}{11}=0
Subtract \frac{4000}{11} from both sides.
3500L^{2}-\frac{4000}{11}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
L=\frac{0±\sqrt{0^{2}-4\times 3500\left(-\frac{4000}{11}\right)}}{2\times 3500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3500 for a, 0 for b, and -\frac{4000}{11} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{0±\sqrt{-4\times 3500\left(-\frac{4000}{11}\right)}}{2\times 3500}
Square 0.
L=\frac{0±\sqrt{-14000\left(-\frac{4000}{11}\right)}}{2\times 3500}
Multiply -4 times 3500.
L=\frac{0±\sqrt{\frac{56000000}{11}}}{2\times 3500}
Multiply -14000 times -\frac{4000}{11}.
L=\frac{0±\frac{2000\sqrt{154}}{11}}{2\times 3500}
Take the square root of \frac{56000000}{11}.
L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000}
Multiply 2 times 3500.
L=\frac{2\sqrt{154}}{77}
Now solve the equation L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000} when ± is plus.
L=-\frac{2\sqrt{154}}{77}
Now solve the equation L=\frac{0±\frac{2000\sqrt{154}}{11}}{7000} when ± is minus.
L=\frac{2\sqrt{154}}{77} L=-\frac{2\sqrt{154}}{77}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}