Solve for x
x=\frac{1}{5095}\approx 0.000196271
Graph
Share
Copied to clipboard
0.528-50.16x-0.51\left(1-5x\right)=0.49\left(1-5x\right)-0.49\left(1-95x\right)
Use the distributive property to multiply 0.528 by 1-95x.
0.528-50.16x-0.51+2.55x=0.49\left(1-5x\right)-0.49\left(1-95x\right)
Use the distributive property to multiply -0.51 by 1-5x.
0.018-50.16x+2.55x=0.49\left(1-5x\right)-0.49\left(1-95x\right)
Subtract 0.51 from 0.528 to get 0.018.
0.018-47.61x=0.49\left(1-5x\right)-0.49\left(1-95x\right)
Combine -50.16x and 2.55x to get -47.61x.
0.018-47.61x=0.49-2.45x-0.49\left(1-95x\right)
Use the distributive property to multiply 0.49 by 1-5x.
0.018-47.61x=0.49-2.45x-0.49+46.55x
Use the distributive property to multiply -0.49 by 1-95x.
0.018-47.61x=-2.45x+46.55x
Subtract 0.49 from 0.49 to get 0.
0.018-47.61x=44.1x
Combine -2.45x and 46.55x to get 44.1x.
0.018-47.61x-44.1x=0
Subtract 44.1x from both sides.
0.018-91.71x=0
Combine -47.61x and -44.1x to get -91.71x.
-91.71x=-0.018
Subtract 0.018 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-0.018}{-91.71}
Divide both sides by -91.71.
x=\frac{-18}{-91710}
Expand \frac{-0.018}{-91.71} by multiplying both numerator and the denominator by 1000.
x=\frac{1}{5095}
Reduce the fraction \frac{-18}{-91710} to lowest terms by extracting and canceling out -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}