Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(0.5\left(x+6\right)+x\right)^{2}=\left(\sqrt{0.75x^{2}-6x+36}\right)^{2}
Square both sides of the equation.
\left(0.5x+3+x\right)^{2}=\left(\sqrt{0.75x^{2}-6x+36}\right)^{2}
Use the distributive property to multiply 0.5 by x+6.
\left(1.5x+3\right)^{2}=\left(\sqrt{0.75x^{2}-6x+36}\right)^{2}
Combine 0.5x and x to get 1.5x.
2.25x^{2}+9x+9=\left(\sqrt{0.75x^{2}-6x+36}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1.5x+3\right)^{2}.
2.25x^{2}+9x+9=0.75x^{2}-6x+36
Calculate \sqrt{0.75x^{2}-6x+36} to the power of 2 and get 0.75x^{2}-6x+36.
2.25x^{2}+9x+9-0.75x^{2}=-6x+36
Subtract 0.75x^{2} from both sides.
1.5x^{2}+9x+9=-6x+36
Combine 2.25x^{2} and -0.75x^{2} to get 1.5x^{2}.
1.5x^{2}+9x+9+6x=36
Add 6x to both sides.
1.5x^{2}+15x+9=36
Combine 9x and 6x to get 15x.
1.5x^{2}+15x+9-36=0
Subtract 36 from both sides.
1.5x^{2}+15x-27=0
Subtract 36 from 9 to get -27.
x=\frac{-15±\sqrt{15^{2}-4\times 1.5\left(-27\right)}}{2\times 1.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5 for a, 15 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 1.5\left(-27\right)}}{2\times 1.5}
Square 15.
x=\frac{-15±\sqrt{225-6\left(-27\right)}}{2\times 1.5}
Multiply -4 times 1.5.
x=\frac{-15±\sqrt{225+162}}{2\times 1.5}
Multiply -6 times -27.
x=\frac{-15±\sqrt{387}}{2\times 1.5}
Add 225 to 162.
x=\frac{-15±3\sqrt{43}}{2\times 1.5}
Take the square root of 387.
x=\frac{-15±3\sqrt{43}}{3}
Multiply 2 times 1.5.
x=\frac{3\sqrt{43}-15}{3}
Now solve the equation x=\frac{-15±3\sqrt{43}}{3} when ± is plus. Add -15 to 3\sqrt{43}.
x=\sqrt{43}-5
Divide -15+3\sqrt{43} by 3.
x=\frac{-3\sqrt{43}-15}{3}
Now solve the equation x=\frac{-15±3\sqrt{43}}{3} when ± is minus. Subtract 3\sqrt{43} from -15.
x=-\sqrt{43}-5
Divide -15-3\sqrt{43} by 3.
x=\sqrt{43}-5 x=-\sqrt{43}-5
The equation is now solved.
0.5\left(\sqrt{43}-5+6\right)+\sqrt{43}-5=\sqrt{0.75\left(\sqrt{43}-5\right)^{2}-6\left(\sqrt{43}-5\right)+36}
Substitute \sqrt{43}-5 for x in the equation 0.5\left(x+6\right)+x=\sqrt{0.75x^{2}-6x+36}.
1.5\times 43^{\frac{1}{2}}-4.5=-\left(\frac{9}{2}-\frac{3}{2}\times 43^{\frac{1}{2}}\right)
Simplify. The value x=\sqrt{43}-5 satisfies the equation.
0.5\left(-\sqrt{43}-5+6\right)-\sqrt{43}-5=\sqrt{0.75\left(-\sqrt{43}-5\right)^{2}-6\left(-\sqrt{43}-5\right)+36}
Substitute -\sqrt{43}-5 for x in the equation 0.5\left(x+6\right)+x=\sqrt{0.75x^{2}-6x+36}.
-1.5\times 43^{\frac{1}{2}}-4.5=\frac{9}{2}+\frac{3}{2}\times 43^{\frac{1}{2}}
Simplify. The value x=-\sqrt{43}-5 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\sqrt{43}-5
Equation \frac{x+6}{2}+x=\sqrt{\frac{3x^{2}}{4}-6x+36} has a unique solution.