Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.5x^{2}-2x=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.5x^{2}-2x-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
0.5x^{2}-2x-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
0.5x^{2}-2x+2=0
Subtract -2 from 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 0.5\times 2}}{2\times 0.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.5 for a, -2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 0.5\times 2}}{2\times 0.5}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\times 2}}{2\times 0.5}
Multiply -4 times 0.5.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2\times 0.5}
Multiply -2 times 2.
x=\frac{-\left(-2\right)±\sqrt{0}}{2\times 0.5}
Add 4 to -4.
x=-\frac{-2}{2\times 0.5}
Take the square root of 0.
x=\frac{2}{2\times 0.5}
The opposite of -2 is 2.
x=\frac{2}{1}
Multiply 2 times 0.5.
0.5x^{2}-2x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.5x^{2}-2x}{0.5}=-\frac{2}{0.5}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{0.5}\right)x=-\frac{2}{0.5}
Dividing by 0.5 undoes the multiplication by 0.5.
x^{2}-4x=-\frac{2}{0.5}
Divide -2 by 0.5 by multiplying -2 by the reciprocal of 0.5.
x^{2}-4x=-4
Divide -2 by 0.5 by multiplying -2 by the reciprocal of 0.5.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-4+4
Square -2.
x^{2}-4x+4=0
Add -4 to 4.
\left(x-2\right)^{2}=0
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-2=0 x-2=0
Simplify.
x=2 x=2
Add 2 to both sides of the equation.
x=2
The equation is now solved. Solutions are the same.