Solve for x
x=\frac{175y}{25-9y}
y\neq \frac{25}{9}\text{ and }y\neq 0
Solve for y
y=\frac{25x}{9x+175}
x\neq 0\text{ and }x\neq -\frac{175}{9}
Graph
Share
Copied to clipboard
0.5xy+x=0.86xy+y\times 7
Multiply both sides of the equation by y.
0.5xy+x-0.86xy=y\times 7
Subtract 0.86xy from both sides.
-0.36xy+x=y\times 7
Combine 0.5xy and -0.86xy to get -0.36xy.
\left(-0.36y+1\right)x=y\times 7
Combine all terms containing x.
\left(-\frac{9y}{25}+1\right)x=7y
The equation is in standard form.
\frac{\left(-\frac{9y}{25}+1\right)x}{-\frac{9y}{25}+1}=\frac{7y}{-\frac{9y}{25}+1}
Divide both sides by -0.36y+1.
x=\frac{7y}{-\frac{9y}{25}+1}
Dividing by -0.36y+1 undoes the multiplication by -0.36y+1.
x=-\frac{175y}{9y-25}
Divide 7y by -0.36y+1.
0.5xy+x=0.86xy+y\times 7
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
0.5xy+x-0.86xy=y\times 7
Subtract 0.86xy from both sides.
-0.36xy+x=y\times 7
Combine 0.5xy and -0.86xy to get -0.36xy.
-0.36xy+x-y\times 7=0
Subtract y\times 7 from both sides.
-0.36xy+x-7y=0
Multiply -1 and 7 to get -7.
-0.36xy-7y=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
\left(-0.36x-7\right)y=-x
Combine all terms containing y.
\left(-\frac{9x}{25}-7\right)y=-x
The equation is in standard form.
\frac{\left(-\frac{9x}{25}-7\right)y}{-\frac{9x}{25}-7}=-\frac{x}{-\frac{9x}{25}-7}
Divide both sides by -0.36x-7.
y=-\frac{x}{-\frac{9x}{25}-7}
Dividing by -0.36x-7 undoes the multiplication by -0.36x-7.
y=\frac{25x}{9x+175}
Divide -x by -0.36x-7.
y=\frac{25x}{9x+175}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}