Solve for x
x = \frac{2 \sqrt{29} - 4}{5} \approx 1.354065923
x=\frac{-2\sqrt{29}-4}{5}\approx -2.954065923
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}+0.8x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-0.8±\sqrt{0.8^{2}-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0.8 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.8±\sqrt{0.64-4\times \frac{1}{2}\left(-2\right)}}{2\times \frac{1}{2}}
Square 0.8 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.8±\sqrt{0.64-2\left(-2\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-0.8±\sqrt{0.64+4}}{2\times \frac{1}{2}}
Multiply -2 times -2.
x=\frac{-0.8±\sqrt{4.64}}{2\times \frac{1}{2}}
Add 0.64 to 4.
x=\frac{-0.8±\frac{2\sqrt{29}}{5}}{2\times \frac{1}{2}}
Take the square root of 4.64.
x=\frac{-0.8±\frac{2\sqrt{29}}{5}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{2\sqrt{29}-4}{5}
Now solve the equation x=\frac{-0.8±\frac{2\sqrt{29}}{5}}{1} when ± is plus. Add -0.8 to \frac{2\sqrt{29}}{5}.
x=\frac{-2\sqrt{29}-4}{5}
Now solve the equation x=\frac{-0.8±\frac{2\sqrt{29}}{5}}{1} when ± is minus. Subtract \frac{2\sqrt{29}}{5} from -0.8.
x=\frac{2\sqrt{29}-4}{5} x=\frac{-2\sqrt{29}-4}{5}
The equation is now solved.
\frac{1}{2}x^{2}+0.8x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+0.8x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
\frac{1}{2}x^{2}+0.8x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
\frac{1}{2}x^{2}+0.8x=2
Subtract -2 from 0.
\frac{\frac{1}{2}x^{2}+0.8x}{\frac{1}{2}}=\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{0.8}{\frac{1}{2}}x=\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+\frac{8}{5}x=\frac{2}{\frac{1}{2}}
Divide 0.8 by \frac{1}{2} by multiplying 0.8 by the reciprocal of \frac{1}{2}.
x^{2}+\frac{8}{5}x=4
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=4+\left(\frac{4}{5}\right)^{2}
Divide \frac{8}{5}, the coefficient of the x term, by 2 to get \frac{4}{5}. Then add the square of \frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{5}x+0.64=4+0.64
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{5}x+0.64=4.64
Add 4 to 0.64.
\left(x+\frac{4}{5}\right)^{2}=4.64
Factor x^{2}+\frac{8}{5}x+0.64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{4.64}
Take the square root of both sides of the equation.
x+\frac{4}{5}=\frac{2\sqrt{29}}{5} x+\frac{4}{5}=-\frac{2\sqrt{29}}{5}
Simplify.
x=\frac{2\sqrt{29}-4}{5} x=\frac{-2\sqrt{29}-4}{5}
Subtract \frac{4}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}