Solve for x
x = \frac{2 \sqrt{15}}{5} \approx 1.549193338
x = -\frac{2 \sqrt{15}}{5} \approx -1.549193338
Graph
Share
Copied to clipboard
2.5x^{2}=6
Multiply 0.5 and 5 to get 2.5.
x^{2}=\frac{6}{2.5}
Divide both sides by 2.5.
x^{2}=\frac{60}{25}
Expand \frac{6}{2.5} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{12}{5}
Reduce the fraction \frac{60}{25} to lowest terms by extracting and canceling out 5.
x=\frac{2\sqrt{15}}{5} x=-\frac{2\sqrt{15}}{5}
Take the square root of both sides of the equation.
2.5x^{2}=6
Multiply 0.5 and 5 to get 2.5.
2.5x^{2}-6=0
Subtract 6 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2.5\left(-6\right)}}{2\times 2.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2.5 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2.5\left(-6\right)}}{2\times 2.5}
Square 0.
x=\frac{0±\sqrt{-10\left(-6\right)}}{2\times 2.5}
Multiply -4 times 2.5.
x=\frac{0±\sqrt{60}}{2\times 2.5}
Multiply -10 times -6.
x=\frac{0±2\sqrt{15}}{2\times 2.5}
Take the square root of 60.
x=\frac{0±2\sqrt{15}}{5}
Multiply 2 times 2.5.
x=\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±2\sqrt{15}}{5} when ± is plus.
x=-\frac{2\sqrt{15}}{5}
Now solve the equation x=\frac{0±2\sqrt{15}}{5} when ± is minus.
x=\frac{2\sqrt{15}}{5} x=-\frac{2\sqrt{15}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}