Solve for x
x = \frac{\sqrt{61} + 5}{2} \approx 6.405124838
x=\frac{5-\sqrt{61}}{2}\approx -1.405124838
Graph
Share
Copied to clipboard
\left(1-0.5x\right)\left(2-\frac{2}{3}x\right)=5
Use the distributive property to multiply 0.5 by 2-x.
2-\frac{5}{3}x+\frac{1}{3}x^{2}=5
Use the distributive property to multiply 1-0.5x by 2-\frac{2}{3}x and combine like terms.
2-\frac{5}{3}x+\frac{1}{3}x^{2}-5=0
Subtract 5 from both sides.
-3-\frac{5}{3}x+\frac{1}{3}x^{2}=0
Subtract 5 from 2 to get -3.
\frac{1}{3}x^{2}-\frac{5}{3}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\left(-\frac{5}{3}\right)^{2}-4\times \frac{1}{3}\left(-3\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -\frac{5}{3} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-4\times \frac{1}{3}\left(-3\right)}}{2\times \frac{1}{3}}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}-\frac{4}{3}\left(-3\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{25}{9}+4}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -3.
x=\frac{-\left(-\frac{5}{3}\right)±\sqrt{\frac{61}{9}}}{2\times \frac{1}{3}}
Add \frac{25}{9} to 4.
x=\frac{-\left(-\frac{5}{3}\right)±\frac{\sqrt{61}}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{61}{9}.
x=\frac{\frac{5}{3}±\frac{\sqrt{61}}{3}}{2\times \frac{1}{3}}
The opposite of -\frac{5}{3} is \frac{5}{3}.
x=\frac{\frac{5}{3}±\frac{\sqrt{61}}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\sqrt{61}+5}{\frac{2}{3}\times 3}
Now solve the equation x=\frac{\frac{5}{3}±\frac{\sqrt{61}}{3}}{\frac{2}{3}} when ± is plus. Add \frac{5}{3} to \frac{\sqrt{61}}{3}.
x=\frac{\sqrt{61}+5}{2}
Divide \frac{5+\sqrt{61}}{3} by \frac{2}{3} by multiplying \frac{5+\sqrt{61}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{5-\sqrt{61}}{\frac{2}{3}\times 3}
Now solve the equation x=\frac{\frac{5}{3}±\frac{\sqrt{61}}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{\sqrt{61}}{3} from \frac{5}{3}.
x=\frac{5-\sqrt{61}}{2}
Divide \frac{5-\sqrt{61}}{3} by \frac{2}{3} by multiplying \frac{5-\sqrt{61}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{\sqrt{61}+5}{2} x=\frac{5-\sqrt{61}}{2}
The equation is now solved.
\left(1-0.5x\right)\left(2-\frac{2}{3}x\right)=5
Use the distributive property to multiply 0.5 by 2-x.
2-\frac{5}{3}x+\frac{1}{3}x^{2}=5
Use the distributive property to multiply 1-0.5x by 2-\frac{2}{3}x and combine like terms.
-\frac{5}{3}x+\frac{1}{3}x^{2}=5-2
Subtract 2 from both sides.
-\frac{5}{3}x+\frac{1}{3}x^{2}=3
Subtract 2 from 5 to get 3.
\frac{1}{3}x^{2}-\frac{5}{3}x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}-\frac{5}{3}x}{\frac{1}{3}}=\frac{3}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{\frac{5}{3}}{\frac{1}{3}}\right)x=\frac{3}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-5x=\frac{3}{\frac{1}{3}}
Divide -\frac{5}{3} by \frac{1}{3} by multiplying -\frac{5}{3} by the reciprocal of \frac{1}{3}.
x^{2}-5x=9
Divide 3 by \frac{1}{3} by multiplying 3 by the reciprocal of \frac{1}{3}.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=9+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=9+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{61}{4}
Add 9 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{61}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{61}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{61}}{2} x-\frac{5}{2}=-\frac{\sqrt{61}}{2}
Simplify.
x=\frac{\sqrt{61}+5}{2} x=\frac{5-\sqrt{61}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}