Evaluate
\frac{\sqrt{186}}{5}\approx 2.727636339
Share
Copied to clipboard
0.5\sqrt{\frac{1}{25}+\frac{1}{6}}\sqrt{144}
Convert decimal number 0.04 to fraction \frac{4}{100}. Reduce the fraction \frac{4}{100} to lowest terms by extracting and canceling out 4.
0.5\sqrt{\frac{6}{150}+\frac{25}{150}}\sqrt{144}
Least common multiple of 25 and 6 is 150. Convert \frac{1}{25} and \frac{1}{6} to fractions with denominator 150.
0.5\sqrt{\frac{6+25}{150}}\sqrt{144}
Since \frac{6}{150} and \frac{25}{150} have the same denominator, add them by adding their numerators.
0.5\sqrt{\frac{31}{150}}\sqrt{144}
Add 6 and 25 to get 31.
0.5\times \frac{\sqrt{31}}{\sqrt{150}}\sqrt{144}
Rewrite the square root of the division \sqrt{\frac{31}{150}} as the division of square roots \frac{\sqrt{31}}{\sqrt{150}}.
0.5\times \frac{\sqrt{31}}{5\sqrt{6}}\sqrt{144}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
0.5\times \frac{\sqrt{31}\sqrt{6}}{5\left(\sqrt{6}\right)^{2}}\sqrt{144}
Rationalize the denominator of \frac{\sqrt{31}}{5\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
0.5\times \frac{\sqrt{31}\sqrt{6}}{5\times 6}\sqrt{144}
The square of \sqrt{6} is 6.
0.5\times \frac{\sqrt{186}}{5\times 6}\sqrt{144}
To multiply \sqrt{31} and \sqrt{6}, multiply the numbers under the square root.
0.5\times \frac{\sqrt{186}}{30}\sqrt{144}
Multiply 5 and 6 to get 30.
0.5\times \frac{\sqrt{186}}{30}\times 12
Calculate the square root of 144 and get 12.
6\times \frac{\sqrt{186}}{30}
Multiply 0.5 and 12 to get 6.
\frac{\sqrt{186}}{5}
Cancel out 30, the greatest common factor in 6 and 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}