Solve for x
x=-\frac{5y}{4}+1.1
Solve for y
y=-\frac{4x}{5}+0.88
Graph
Share
Copied to clipboard
0.4x=0.44-0.5y
Subtract 0.5y from both sides.
0.4x=-\frac{y}{2}+0.44
The equation is in standard form.
\frac{0.4x}{0.4}=\frac{-\frac{y}{2}+0.44}{0.4}
Divide both sides of the equation by 0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{y}{2}+0.44}{0.4}
Dividing by 0.4 undoes the multiplication by 0.4.
x=-\frac{5y}{4}+\frac{11}{10}
Divide 0.44-\frac{y}{2} by 0.4 by multiplying 0.44-\frac{y}{2} by the reciprocal of 0.4.
0.5y=0.44-0.4x
Subtract 0.4x from both sides.
0.5y=-\frac{2x}{5}+0.44
The equation is in standard form.
\frac{0.5y}{0.5}=\frac{-\frac{2x}{5}+0.44}{0.5}
Multiply both sides by 2.
y=\frac{-\frac{2x}{5}+0.44}{0.5}
Dividing by 0.5 undoes the multiplication by 0.5.
y=-\frac{4x}{5}+\frac{22}{25}
Divide 0.44-\frac{2x}{5} by 0.5 by multiplying 0.44-\frac{2x}{5} by the reciprocal of 0.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}