Evaluate
\frac{87435}{9028}\approx 9.684869296
Factor
\frac{5 \cdot 29 \cdot 67 \cdot 3 ^ {2}}{37 \cdot 61 \cdot 2 ^ {2}} = 9\frac{6183}{9028} = 9.684869295525033
Share
Copied to clipboard
\frac{\frac{\frac{0.435\times 10^{4}\times 2.412}{915}}{0.2368}}{5}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{\frac{0.435\times 10^{4}\times 2.412}{915}}{0.2368\times 5}
Express \frac{\frac{\frac{0.435\times 10^{4}\times 2.412}{915}}{0.2368}}{5} as a single fraction.
\frac{\frac{0.435\times 10000\times 2.412}{915}}{0.2368\times 5}
Calculate 10 to the power of 4 and get 10000.
\frac{\frac{4350\times 2.412}{915}}{0.2368\times 5}
Multiply 0.435 and 10000 to get 4350.
\frac{\frac{10492.2}{915}}{0.2368\times 5}
Multiply 4350 and 2.412 to get 10492.2.
\frac{\frac{104922}{9150}}{0.2368\times 5}
Expand \frac{10492.2}{915} by multiplying both numerator and the denominator by 10.
\frac{\frac{17487}{1525}}{0.2368\times 5}
Reduce the fraction \frac{104922}{9150} to lowest terms by extracting and canceling out 6.
\frac{\frac{17487}{1525}}{1.184}
Multiply 0.2368 and 5 to get 1.184.
\frac{17487}{1525\times 1.184}
Express \frac{\frac{17487}{1525}}{1.184} as a single fraction.
\frac{17487}{1805.6}
Multiply 1525 and 1.184 to get 1805.6.
\frac{174870}{18056}
Expand \frac{17487}{1805.6} by multiplying both numerator and the denominator by 10.
\frac{87435}{9028}
Reduce the fraction \frac{174870}{18056} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}