Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
0.4\left(3x+41\right)=14+3x
Variable x cannot be equal to -\frac{41}{3} since division by zero is not defined. Multiply both sides of the equation by 3x+41.
1.2x+16.4=14+3x
Use the distributive property to multiply 0.4 by 3x+41.
1.2x+16.4-3x=14
Subtract 3x from both sides.
-1.8x+16.4=14
Combine 1.2x and -3x to get -1.8x.
-1.8x=14-16.4
Subtract 16.4 from both sides.
-1.8x=-2.4
Subtract 16.4 from 14 to get -2.4.
x=\frac{-2.4}{-1.8}
Divide both sides by -1.8.
x=\frac{-24}{-18}
Expand \frac{-2.4}{-1.8} by multiplying both numerator and the denominator by 10.
x=\frac{4}{3}
Reduce the fraction \frac{-24}{-18} to lowest terms by extracting and canceling out -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}