Solve for x
x\leq \frac{175}{36}
Graph
Share
Copied to clipboard
6.1\leq 2.6-3\left(1.2x-7\right)
Add 0.4 and 5.7 to get 6.1.
6.1\leq 2.6-3.6x+21
Use the distributive property to multiply -3 by 1.2x-7.
6.1\leq 23.6-3.6x
Add 2.6 and 21 to get 23.6.
23.6-3.6x\geq 6.1
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-3.6x\geq 6.1-23.6
Subtract 23.6 from both sides.
-3.6x\geq -17.5
Subtract 23.6 from 6.1 to get -17.5.
x\leq \frac{-17.5}{-3.6}
Divide both sides by -3.6. Since -3.6 is negative, the inequality direction is changed.
x\leq \frac{-175}{-36}
Expand \frac{-17.5}{-3.6} by multiplying both numerator and the denominator by 10.
x\leq \frac{175}{36}
Fraction \frac{-175}{-36} can be simplified to \frac{175}{36} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}