Solve for D
D=\frac{200\ln(2)}{33}\approx 4.200892003
Share
Copied to clipboard
\frac{0.4}{1.6}=e^{\left(-D\right)\left(1-0.67\right)}
Divide both sides by 1.6.
\frac{4}{16}=e^{\left(-D\right)\left(1-0.67\right)}
Expand \frac{0.4}{1.6} by multiplying both numerator and the denominator by 10.
\frac{1}{4}=e^{\left(-D\right)\left(1-0.67\right)}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
\frac{1}{4}=e^{\left(-D\right)\times 0.33}
Subtract 0.67 from 1 to get 0.33.
e^{\left(-D\right)\times 0.33}=\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
e^{-0.33D}=\frac{1}{4}
Multiply -1 and 0.33 to get -0.33.
e^{-0.33D}=0.25
Use the rules of exponents and logarithms to solve the equation.
\log(e^{-0.33D})=\log(0.25)
Take the logarithm of both sides of the equation.
-0.33D\log(e)=\log(0.25)
The logarithm of a number raised to a power is the power times the logarithm of the number.
-0.33D=\frac{\log(0.25)}{\log(e)}
Divide both sides by \log(e).
-0.33D=\log_{e}\left(0.25\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
D=-\frac{2\ln(2)}{-0.33}
Divide both sides of the equation by -0.33, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}