Evaluate
\frac{29}{12}\approx 2.416666667
Factor
\frac{29}{3 \cdot 2 ^ {2}} = 2\frac{5}{12} = 2.4166666666666665
Share
Copied to clipboard
0.4+\frac{6+1}{2}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Multiply 3 and 2 to get 6.
0.4+\frac{7}{2}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 6 and 1 to get 7.
\frac{2}{5}+\frac{7}{2}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Convert decimal number 0.4 to fraction \frac{4}{10}. Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
\frac{4}{10}+\frac{35}{10}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Least common multiple of 5 and 2 is 10. Convert \frac{2}{5} and \frac{7}{2} to fractions with denominator 10.
\frac{4+35}{10}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Since \frac{4}{10} and \frac{35}{10} have the same denominator, add them by adding their numerators.
\frac{39}{10}-\frac{1\times 2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 4 and 35 to get 39.
\frac{39}{10}-\frac{2+1}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Multiply 1 and 2 to get 2.
\frac{39}{10}-\frac{3}{2}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 2 and 1 to get 3.
\frac{39}{10}-\frac{15}{10}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Least common multiple of 10 and 2 is 10. Convert \frac{39}{10} and \frac{3}{2} to fractions with denominator 10.
\frac{39-15}{10}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Since \frac{39}{10} and \frac{15}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{24}{10}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Subtract 15 from 39 to get 24.
\frac{12}{5}+0.3-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{5}+\frac{3}{10}-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Convert decimal number 0.3 to fraction \frac{3}{10}.
\frac{24}{10}+\frac{3}{10}-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Least common multiple of 5 and 10 is 10. Convert \frac{12}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{24+3}{10}-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Since \frac{24}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{27}{10}-\frac{1\times 5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 24 and 3 to get 27.
\frac{27}{10}-\frac{5+1}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Multiply 1 and 5 to get 5.
\frac{27}{10}-\frac{6}{5}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 5 and 1 to get 6.
\frac{27}{10}-\frac{12}{10}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Least common multiple of 10 and 5 is 10. Convert \frac{27}{10} and \frac{6}{5} to fractions with denominator 10.
\frac{27-12}{10}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Since \frac{27}{10} and \frac{12}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{10}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Subtract 12 from 27 to get 15.
\frac{3}{2}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{9}{6}+\frac{1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Least common multiple of 2 and 6 is 6. Convert \frac{3}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{9+1}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Since \frac{9}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{10}{6}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Add 9 and 1 to get 10.
\frac{5}{3}-\frac{1\times 2+1}{2}+\frac{2\times 4+1}{4}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{3}-\frac{2+1}{2}+\frac{2\times 4+1}{4}
Multiply 1 and 2 to get 2.
\frac{5}{3}-\frac{3}{2}+\frac{2\times 4+1}{4}
Add 2 and 1 to get 3.
\frac{10}{6}-\frac{9}{6}+\frac{2\times 4+1}{4}
Least common multiple of 3 and 2 is 6. Convert \frac{5}{3} and \frac{3}{2} to fractions with denominator 6.
\frac{10-9}{6}+\frac{2\times 4+1}{4}
Since \frac{10}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}+\frac{2\times 4+1}{4}
Subtract 9 from 10 to get 1.
\frac{1}{6}+\frac{8+1}{4}
Multiply 2 and 4 to get 8.
\frac{1}{6}+\frac{9}{4}
Add 8 and 1 to get 9.
\frac{2}{12}+\frac{27}{12}
Least common multiple of 6 and 4 is 12. Convert \frac{1}{6} and \frac{9}{4} to fractions with denominator 12.
\frac{2+27}{12}
Since \frac{2}{12} and \frac{27}{12} have the same denominator, add them by adding their numerators.
\frac{29}{12}
Add 2 and 27 to get 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}