Solve for B
B=\frac{\sqrt{3089}}{25}-2\approx 0.223150917
B=-\frac{\sqrt{3089}}{25}-2\approx -4.223150917
Quiz
Quadratic Equation
5 problems similar to:
0.38 ^ { 2 } + B + ( \frac { B } { 2 } ) ^ { 2 } = 0.38
Share
Copied to clipboard
0.1444+B+\left(\frac{B}{2}\right)^{2}=0.38
Calculate 0.38 to the power of 2 and get 0.1444.
0.1444+B+\frac{B^{2}}{2^{2}}=0.38
To raise \frac{B}{2} to a power, raise both numerator and denominator to the power and then divide.
0.1444+\frac{B\times 2^{2}}{2^{2}}+\frac{B^{2}}{2^{2}}=0.38
To add or subtract expressions, expand them to make their denominators the same. Multiply B times \frac{2^{2}}{2^{2}}.
0.1444+\frac{B\times 2^{2}+B^{2}}{2^{2}}=0.38
Since \frac{B\times 2^{2}}{2^{2}} and \frac{B^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
0.1444+\frac{4B+B^{2}}{2^{2}}=0.38
Do the multiplications in B\times 2^{2}+B^{2}.
0.1444+\frac{4B+B^{2}}{4}=0.38
Calculate 2 to the power of 2 and get 4.
0.1444+B+\frac{1}{4}B^{2}=0.38
Divide each term of 4B+B^{2} by 4 to get B+\frac{1}{4}B^{2}.
0.1444+B+\frac{1}{4}B^{2}-0.38=0
Subtract 0.38 from both sides.
-0.2356+B+\frac{1}{4}B^{2}=0
Subtract 0.38 from 0.1444 to get -0.2356.
\frac{1}{4}B^{2}+B-0.2356=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
B=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{4}\left(-0.2356\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, 1 for b, and -0.2356 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-1±\sqrt{1-4\times \frac{1}{4}\left(-0.2356\right)}}{2\times \frac{1}{4}}
Square 1.
B=\frac{-1±\sqrt{1-\left(-0.2356\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
B=\frac{-1±\sqrt{1+0.2356}}{2\times \frac{1}{4}}
Multiply -1 times -0.2356.
B=\frac{-1±\sqrt{1.2356}}{2\times \frac{1}{4}}
Add 1 to 0.2356.
B=\frac{-1±\frac{\sqrt{3089}}{50}}{2\times \frac{1}{4}}
Take the square root of 1.2356.
B=\frac{-1±\frac{\sqrt{3089}}{50}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
B=\frac{\frac{\sqrt{3089}}{50}-1}{\frac{1}{2}}
Now solve the equation B=\frac{-1±\frac{\sqrt{3089}}{50}}{\frac{1}{2}} when ± is plus. Add -1 to \frac{\sqrt{3089}}{50}.
B=\frac{\sqrt{3089}}{25}-2
Divide -1+\frac{\sqrt{3089}}{50} by \frac{1}{2} by multiplying -1+\frac{\sqrt{3089}}{50} by the reciprocal of \frac{1}{2}.
B=\frac{-\frac{\sqrt{3089}}{50}-1}{\frac{1}{2}}
Now solve the equation B=\frac{-1±\frac{\sqrt{3089}}{50}}{\frac{1}{2}} when ± is minus. Subtract \frac{\sqrt{3089}}{50} from -1.
B=-\frac{\sqrt{3089}}{25}-2
Divide -1-\frac{\sqrt{3089}}{50} by \frac{1}{2} by multiplying -1-\frac{\sqrt{3089}}{50} by the reciprocal of \frac{1}{2}.
B=\frac{\sqrt{3089}}{25}-2 B=-\frac{\sqrt{3089}}{25}-2
The equation is now solved.
0.1444+B+\left(\frac{B}{2}\right)^{2}=0.38
Calculate 0.38 to the power of 2 and get 0.1444.
0.1444+B+\frac{B^{2}}{2^{2}}=0.38
To raise \frac{B}{2} to a power, raise both numerator and denominator to the power and then divide.
0.1444+\frac{B\times 2^{2}}{2^{2}}+\frac{B^{2}}{2^{2}}=0.38
To add or subtract expressions, expand them to make their denominators the same. Multiply B times \frac{2^{2}}{2^{2}}.
0.1444+\frac{B\times 2^{2}+B^{2}}{2^{2}}=0.38
Since \frac{B\times 2^{2}}{2^{2}} and \frac{B^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
0.1444+\frac{4B+B^{2}}{2^{2}}=0.38
Do the multiplications in B\times 2^{2}+B^{2}.
0.1444+\frac{4B+B^{2}}{4}=0.38
Calculate 2 to the power of 2 and get 4.
0.1444+B+\frac{1}{4}B^{2}=0.38
Divide each term of 4B+B^{2} by 4 to get B+\frac{1}{4}B^{2}.
B+\frac{1}{4}B^{2}=0.38-0.1444
Subtract 0.1444 from both sides.
B+\frac{1}{4}B^{2}=0.2356
Subtract 0.1444 from 0.38 to get 0.2356.
\frac{1}{4}B^{2}+B=0.2356
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}B^{2}+B}{\frac{1}{4}}=\frac{0.2356}{\frac{1}{4}}
Multiply both sides by 4.
B^{2}+\frac{1}{\frac{1}{4}}B=\frac{0.2356}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
B^{2}+4B=\frac{0.2356}{\frac{1}{4}}
Divide 1 by \frac{1}{4} by multiplying 1 by the reciprocal of \frac{1}{4}.
B^{2}+4B=\frac{589}{625}
Divide 0.2356 by \frac{1}{4} by multiplying 0.2356 by the reciprocal of \frac{1}{4}.
B^{2}+4B+2^{2}=\frac{589}{625}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
B^{2}+4B+4=\frac{589}{625}+4
Square 2.
B^{2}+4B+4=\frac{3089}{625}
Add \frac{589}{625} to 4.
\left(B+2\right)^{2}=\frac{3089}{625}
Factor B^{2}+4B+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(B+2\right)^{2}}=\sqrt{\frac{3089}{625}}
Take the square root of both sides of the equation.
B+2=\frac{\sqrt{3089}}{25} B+2=-\frac{\sqrt{3089}}{25}
Simplify.
B=\frac{\sqrt{3089}}{25}-2 B=-\frac{\sqrt{3089}}{25}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}