Solve for x
x=\frac{43314-59y}{35}
Solve for y
y=\frac{43314-35x}{59}
Graph
Share
Copied to clipboard
0.35x=433.14-0.59y
Subtract 0.59y from both sides.
0.35x=-\frac{59y}{100}+433.14
The equation is in standard form.
\frac{0.35x}{0.35}=\frac{-\frac{59y}{100}+433.14}{0.35}
Divide both sides of the equation by 0.35, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{59y}{100}+433.14}{0.35}
Dividing by 0.35 undoes the multiplication by 0.35.
x=\frac{43314-59y}{35}
Divide 433.14-\frac{59y}{100} by 0.35 by multiplying 433.14-\frac{59y}{100} by the reciprocal of 0.35.
0.59y=433.14-0.35x
Subtract 0.35x from both sides.
0.59y=-\frac{7x}{20}+433.14
The equation is in standard form.
\frac{0.59y}{0.59}=\frac{-\frac{7x}{20}+433.14}{0.59}
Divide both sides of the equation by 0.59, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{7x}{20}+433.14}{0.59}
Dividing by 0.59 undoes the multiplication by 0.59.
y=\frac{43314-35x}{59}
Divide 433.14-\frac{7x}{20} by 0.59 by multiplying 433.14-\frac{7x}{20} by the reciprocal of 0.59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}