Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+0.513x=0.351
Swap sides so that all variable terms are on the left hand side.
2x^{2}+0.513x-0.351=0
Subtract 0.351 from both sides.
x=\frac{-0.513±\sqrt{0.513^{2}-4\times 2\left(-0.351\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0.513 for b, and -0.351 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.513±\sqrt{0.263169-4\times 2\left(-0.351\right)}}{2\times 2}
Square 0.513 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.513±\sqrt{0.263169-8\left(-0.351\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-0.513±\sqrt{0.263169+2.808}}{2\times 2}
Multiply -8 times -0.351.
x=\frac{-0.513±\sqrt{3.071169}}{2\times 2}
Add 0.263169 to 2.808 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.513±\frac{3\sqrt{341241}}{1000}}{2\times 2}
Take the square root of 3.071169.
x=\frac{-0.513±\frac{3\sqrt{341241}}{1000}}{4}
Multiply 2 times 2.
x=\frac{3\sqrt{341241}-513}{4\times 1000}
Now solve the equation x=\frac{-0.513±\frac{3\sqrt{341241}}{1000}}{4} when ± is plus. Add -0.513 to \frac{3\sqrt{341241}}{1000}.
x=\frac{3\sqrt{341241}-513}{4000}
Divide \frac{-513+3\sqrt{341241}}{1000} by 4.
x=\frac{-3\sqrt{341241}-513}{4\times 1000}
Now solve the equation x=\frac{-0.513±\frac{3\sqrt{341241}}{1000}}{4} when ± is minus. Subtract \frac{3\sqrt{341241}}{1000} from -0.513.
x=\frac{-3\sqrt{341241}-513}{4000}
Divide \frac{-513-3\sqrt{341241}}{1000} by 4.
x=\frac{3\sqrt{341241}-513}{4000} x=\frac{-3\sqrt{341241}-513}{4000}
The equation is now solved.
2x^{2}+0.513x=0.351
Swap sides so that all variable terms are on the left hand side.
\frac{2x^{2}+0.513x}{2}=\frac{0.351}{2}
Divide both sides by 2.
x^{2}+\frac{0.513}{2}x=\frac{0.351}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+0.2565x=\frac{0.351}{2}
Divide 0.513 by 2.
x^{2}+0.2565x=0.1755
Divide 0.351 by 2.
x^{2}+0.2565x+0.12825^{2}=0.1755+0.12825^{2}
Divide 0.2565, the coefficient of the x term, by 2 to get 0.12825. Then add the square of 0.12825 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.2565x+0.0164480625=0.1755+0.0164480625
Square 0.12825 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.2565x+0.0164480625=0.1919480625
Add 0.1755 to 0.0164480625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.12825\right)^{2}=0.1919480625
Factor x^{2}+0.2565x+0.0164480625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.12825\right)^{2}}=\sqrt{0.1919480625}
Take the square root of both sides of the equation.
x+0.12825=\frac{3\sqrt{341241}}{4000} x+0.12825=-\frac{3\sqrt{341241}}{4000}
Simplify.
x=\frac{3\sqrt{341241}-513}{4000} x=\frac{-3\sqrt{341241}-513}{4000}
Subtract 0.12825 from both sides of the equation.