Solve for x
x = \frac{2 \sqrt{55} + 10}{3} \approx 8.277465658
x=\frac{10-2\sqrt{55}}{3}\approx -1.610798991
Graph
Share
Copied to clipboard
0.3x^{2}-2x=4
Subtract 2x from both sides.
0.3x^{2}-2x-4=0
Subtract 4 from both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 0.3\left(-4\right)}}{2\times 0.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.3 for a, -2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 0.3\left(-4\right)}}{2\times 0.3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-1.2\left(-4\right)}}{2\times 0.3}
Multiply -4 times 0.3.
x=\frac{-\left(-2\right)±\sqrt{4+4.8}}{2\times 0.3}
Multiply -1.2 times -4.
x=\frac{-\left(-2\right)±\sqrt{8.8}}{2\times 0.3}
Add 4 to 4.8.
x=\frac{-\left(-2\right)±\frac{2\sqrt{55}}{5}}{2\times 0.3}
Take the square root of 8.8.
x=\frac{2±\frac{2\sqrt{55}}{5}}{2\times 0.3}
The opposite of -2 is 2.
x=\frac{2±\frac{2\sqrt{55}}{5}}{0.6}
Multiply 2 times 0.3.
x=\frac{\frac{2\sqrt{55}}{5}+2}{0.6}
Now solve the equation x=\frac{2±\frac{2\sqrt{55}}{5}}{0.6} when ± is plus. Add 2 to \frac{2\sqrt{55}}{5}.
x=\frac{2\sqrt{55}+10}{3}
Divide 2+\frac{2\sqrt{55}}{5} by 0.6 by multiplying 2+\frac{2\sqrt{55}}{5} by the reciprocal of 0.6.
x=\frac{-\frac{2\sqrt{55}}{5}+2}{0.6}
Now solve the equation x=\frac{2±\frac{2\sqrt{55}}{5}}{0.6} when ± is minus. Subtract \frac{2\sqrt{55}}{5} from 2.
x=\frac{10-2\sqrt{55}}{3}
Divide 2-\frac{2\sqrt{55}}{5} by 0.6 by multiplying 2-\frac{2\sqrt{55}}{5} by the reciprocal of 0.6.
x=\frac{2\sqrt{55}+10}{3} x=\frac{10-2\sqrt{55}}{3}
The equation is now solved.
0.3x^{2}-2x=4
Subtract 2x from both sides.
\frac{0.3x^{2}-2x}{0.3}=\frac{4}{0.3}
Divide both sides of the equation by 0.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{2}{0.3}\right)x=\frac{4}{0.3}
Dividing by 0.3 undoes the multiplication by 0.3.
x^{2}-\frac{20}{3}x=\frac{4}{0.3}
Divide -2 by 0.3 by multiplying -2 by the reciprocal of 0.3.
x^{2}-\frac{20}{3}x=\frac{40}{3}
Divide 4 by 0.3 by multiplying 4 by the reciprocal of 0.3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=\frac{40}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{40}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{220}{9}
Add \frac{40}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{220}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{220}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{2\sqrt{55}}{3} x-\frac{10}{3}=-\frac{2\sqrt{55}}{3}
Simplify.
x=\frac{2\sqrt{55}+10}{3} x=\frac{10-2\sqrt{55}}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}