Solve for x
x\geq 1
Graph
Share
Copied to clipboard
-3x+1.8\leq -4.8+3.6x
Use the distributive property to multiply 0.3 by -10x+6.
-3x+1.8-3.6x\leq -4.8
Subtract 3.6x from both sides.
-6.6x+1.8\leq -4.8
Combine -3x and -3.6x to get -6.6x.
-6.6x\leq -4.8-1.8
Subtract 1.8 from both sides.
-6.6x\leq -6.6
Subtract 1.8 from -4.8 to get -6.6.
x\geq \frac{-6.6}{-6.6}
Divide both sides by -6.6. Since -6.6 is negative, the inequality direction is changed.
x\geq 1
Divide -6.6 by -6.6 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}