Solve for a
a\geq 1000
Share
Copied to clipboard
0.25a+1250-0.5a\leq 1000
Use the distributive property to multiply 2500-a by 0.5.
-0.25a+1250\leq 1000
Combine 0.25a and -0.5a to get -0.25a.
-0.25a\leq 1000-1250
Subtract 1250 from both sides.
-0.25a\leq -250
Subtract 1250 from 1000 to get -250.
a\geq \frac{-250}{-0.25}
Divide both sides by -0.25. Since -0.25 is negative, the inequality direction is changed.
a\geq \frac{-25000}{-25}
Expand \frac{-250}{-0.25} by multiplying both numerator and the denominator by 100.
a\geq 1000
Divide -25000 by -25 to get 1000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}