Skip to main content
Solve for F_0
Tick mark Image
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

0.25 \cdot F 0.6427876096865394 + F 0.766044443118978 = m g {(3 + 9.8)}
Evaluate trigonometric functions in the problem
0.16069690242163485F_{0}+F_{0}\times 0.766044443118978=mg\left(3+9.8\right)
Multiply 0.25 and 0.6427876096865394 to get 0.16069690242163485.
0.92674134554061285F_{0}=mg\left(3+9.8\right)
Combine 0.16069690242163485F_{0} and F_{0}\times 0.766044443118978 to get 0.92674134554061285F_{0}.
0.92674134554061285F_{0}=mg\times 12.8
Add 3 and 9.8 to get 12.8.
0.92674134554061285F_{0}=\frac{64gm}{5}
The equation is in standard form.
\frac{0.92674134554061285F_{0}}{0.92674134554061285}=\frac{64gm}{0.92674134554061285\times 5}
Divide both sides of the equation by 0.92674134554061285, which is the same as multiplying both sides by the reciprocal of the fraction.
F_{0}=\frac{64gm}{0.92674134554061285\times 5}
Dividing by 0.92674134554061285 undoes the multiplication by 0.92674134554061285.
F_{0}=\frac{256000000000000000gm}{18534826910812257}
Divide \frac{64mg}{5} by 0.92674134554061285 by multiplying \frac{64mg}{5} by the reciprocal of 0.92674134554061285.
0.25 \cdot F 0.6427876096865394 + F 0.766044443118978 = m g {(3 + 9.8)}
Evaluate trigonometric functions in the problem
0.16069690242163485F_{0}+F_{0}\times 0.766044443118978=mg\left(3+9.8\right)
Multiply 0.25 and 0.6427876096865394 to get 0.16069690242163485.
0.92674134554061285F_{0}=mg\left(3+9.8\right)
Combine 0.16069690242163485F_{0} and F_{0}\times 0.766044443118978 to get 0.92674134554061285F_{0}.
0.92674134554061285F_{0}=mg\times 12.8
Add 3 and 9.8 to get 12.8.
mg\times 12.8=0.92674134554061285F_{0}
Swap sides so that all variable terms are on the left hand side.
\frac{64m}{5}g=\frac{18534826910812257F_{0}}{20000000000000000}
The equation is in standard form.
\frac{5\times \frac{64m}{5}g}{64m}=\frac{18534826910812257F_{0}}{20000000000000000\times \frac{64m}{5}}
Divide both sides by 12.8m.
g=\frac{18534826910812257F_{0}}{20000000000000000\times \frac{64m}{5}}
Dividing by 12.8m undoes the multiplication by 12.8m.
g=\frac{18534826910812257F_{0}}{256000000000000000m}
Divide \frac{18534826910812257F_{0}}{20000000000000000} by 12.8m.