Solve for f
f=1.2
Share
Copied to clipboard
f-0.75=0.05\left(10f-3\right)
Use the distributive property to multiply 0.25 by 4f-3.
f-0.75=0.5f-0.15
Use the distributive property to multiply 0.05 by 10f-3.
f-0.75-0.5f=-0.15
Subtract 0.5f from both sides.
0.5f-0.75=-0.15
Combine f and -0.5f to get 0.5f.
0.5f=-0.15+0.75
Add 0.75 to both sides.
0.5f=0.6
Add -0.15 and 0.75 to get 0.6.
f=\frac{0.6}{0.5}
Divide both sides by 0.5.
f=\frac{6}{5}
Expand \frac{0.6}{0.5} by multiplying both numerator and the denominator by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}