Solve for x
x\geq \frac{144}{17}
Graph
Quiz
Algebra
5 problems similar to:
0.25 \frac{ 1 }{ 2 } x+1.3x+ \frac{ 1 }{ 2 } 0.15 \times x \geq 18
Share
Copied to clipboard
\left(0.25\times 2+1\right)x+2.6x+1\times 0.15x\geq 36
Multiply both sides of the equation by 2. Since 2 is positive, the inequality direction remains the same.
\left(0.5+1\right)x+2.6x+1\times 0.15x\geq 36
Multiply 0.25 and 2 to get 0.5.
1.5x+2.6x+1\times 0.15x\geq 36
Add 0.5 and 1 to get 1.5.
4.1x+1\times 0.15x\geq 36
Combine 1.5x and 2.6x to get 4.1x.
4.1x+0.15x\geq 36
Multiply 1 and 0.15 to get 0.15.
4.25x\geq 36
Combine 4.1x and 0.15x to get 4.25x.
x\geq \frac{36}{4.25}
Divide both sides by 4.25. Since 4.25 is positive, the inequality direction remains the same.
x\geq \frac{3600}{425}
Expand \frac{36}{4.25} by multiplying both numerator and the denominator by 100.
x\geq \frac{144}{17}
Reduce the fraction \frac{3600}{425} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}