Solve for V
V=\frac{gm+A}{4m}
m\neq 0\text{ and }A\neq -gm\text{ and }g\neq -\frac{A}{m}
Solve for A
A=-m\left(g-4V\right)
V\neq 0\text{ and }m\neq 0
Share
Copied to clipboard
0.25=\frac{V}{\frac{gm}{m}+\frac{A}{m}}
To add or subtract expressions, expand them to make their denominators the same. Multiply g times \frac{m}{m}.
0.25=\frac{V}{\frac{gm+A}{m}}
Since \frac{gm}{m} and \frac{A}{m} have the same denominator, add them by adding their numerators.
0.25=\frac{Vm}{gm+A}
Divide V by \frac{gm+A}{m} by multiplying V by the reciprocal of \frac{gm+A}{m}.
\frac{Vm}{gm+A}=0.25
Swap sides so that all variable terms are on the left hand side.
Vm=0.25\left(gm+A\right)
Multiply both sides of the equation by gm+A.
Vm=0.25gm+0.25A
Use the distributive property to multiply 0.25 by gm+A.
mV=\frac{gm+A}{4}
The equation is in standard form.
\frac{mV}{m}=\frac{gm+A}{4m}
Divide both sides by m.
V=\frac{gm+A}{4m}
Dividing by m undoes the multiplication by m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}