Solve for x
x=\frac{40\sqrt{249}\left(10y-9\right)}{3y}
y\neq 0
Solve for y
y=\frac{29880}{-\sqrt{249}x+33200}
x\neq \frac{400\sqrt{249}}{3}
Graph
Share
Copied to clipboard
0.2=2y\left(\frac{0.8}{1+0.2}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Subtract 0.2 from 1 to get 0.8.
0.2=2y\left(\frac{0.8}{1.2}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Add 1 and 0.2 to get 1.2.
0.2=2y\left(\frac{8}{12}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Expand \frac{0.8}{1.2} by multiplying both numerator and the denominator by 10.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.2=2y\left(\frac{2}{3}-\frac{x}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{49800}\right)-1
Multiply 200 and 249 to get 49800.
0.2=2y\left(\frac{2\times 16600}{49800}-\frac{x\sqrt{249}}{49800}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 49800 is 49800. Multiply \frac{2}{3} times \frac{16600}{16600}.
0.2=2y\times \frac{2\times 16600-x\sqrt{249}}{49800}-1
Since \frac{2\times 16600}{49800} and \frac{x\sqrt{249}}{49800} have the same denominator, subtract them by subtracting their numerators.
0.2=2y\times \frac{33200-x\sqrt{249}}{49800}-1
Do the multiplications in 2\times 16600-x\sqrt{249}.
0.2=\frac{33200-x\sqrt{249}}{24900}y-1
Cancel out 49800, the greatest common factor in 2 and 49800.
0.2=\frac{\left(33200-x\sqrt{249}\right)y}{24900}-1
Express \frac{33200-x\sqrt{249}}{24900}y as a single fraction.
\frac{\left(33200-x\sqrt{249}\right)y}{24900}-1=0.2
Swap sides so that all variable terms are on the left hand side.
\frac{33200y-x\sqrt{249}y}{24900}-1=0.2
Use the distributive property to multiply 33200-x\sqrt{249} by y.
\frac{33200y-x\sqrt{249}y}{24900}=0.2+1
Add 1 to both sides.
\frac{33200y-x\sqrt{249}y}{24900}=1.2
Add 0.2 and 1 to get 1.2.
33200y-x\sqrt{249}y=1.2\times 24900
Multiply both sides by 24900.
33200y-x\sqrt{249}y=29880
Multiply 1.2 and 24900 to get 29880.
-x\sqrt{249}y=29880-33200y
Subtract 33200y from both sides.
\left(-\sqrt{249}y\right)x=29880-33200y
The equation is in standard form.
\frac{\left(-\sqrt{249}y\right)x}{-\sqrt{249}y}=\frac{29880-33200y}{-\sqrt{249}y}
Divide both sides by -\sqrt{249}y.
x=\frac{29880-33200y}{-\sqrt{249}y}
Dividing by -\sqrt{249}y undoes the multiplication by -\sqrt{249}y.
x=-\frac{40\sqrt{249}\left(9-10y\right)}{3y}
Divide 29880-33200y by -\sqrt{249}y.
0.2=2y\left(\frac{0.8}{1+0.2}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Subtract 0.2 from 1 to get 0.8.
0.2=2y\left(\frac{0.8}{1.2}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Add 1 and 0.2 to get 1.2.
0.2=2y\left(\frac{8}{12}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Expand \frac{0.8}{1.2} by multiplying both numerator and the denominator by 10.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9.96\times 10^{6}}}\right)-1
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9.96\times 1000000}}\right)-1
Calculate 10 to the power of 6 and get 1000000.
0.2=2y\left(\frac{2}{3}-\frac{x}{\sqrt{9960000}}\right)-1
Multiply 9.96 and 1000000 to get 9960000.
0.2=2y\left(\frac{2}{3}-\frac{x}{200\sqrt{249}}\right)-1
Factor 9960000=200^{2}\times 249. Rewrite the square root of the product \sqrt{200^{2}\times 249} as the product of square roots \sqrt{200^{2}}\sqrt{249}. Take the square root of 200^{2}.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{200\left(\sqrt{249}\right)^{2}}\right)-1
Rationalize the denominator of \frac{x}{200\sqrt{249}} by multiplying numerator and denominator by \sqrt{249}.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{200\times 249}\right)-1
The square of \sqrt{249} is 249.
0.2=2y\left(\frac{2}{3}-\frac{x\sqrt{249}}{49800}\right)-1
Multiply 200 and 249 to get 49800.
0.2=2y\left(\frac{2\times 16600}{49800}-\frac{x\sqrt{249}}{49800}\right)-1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 49800 is 49800. Multiply \frac{2}{3} times \frac{16600}{16600}.
0.2=2y\times \frac{2\times 16600-x\sqrt{249}}{49800}-1
Since \frac{2\times 16600}{49800} and \frac{x\sqrt{249}}{49800} have the same denominator, subtract them by subtracting their numerators.
0.2=2y\times \frac{33200-x\sqrt{249}}{49800}-1
Do the multiplications in 2\times 16600-x\sqrt{249}.
0.2=\frac{33200-x\sqrt{249}}{24900}y-1
Cancel out 49800, the greatest common factor in 2 and 49800.
0.2=\frac{\left(33200-x\sqrt{249}\right)y}{24900}-1
Express \frac{33200-x\sqrt{249}}{24900}y as a single fraction.
\frac{\left(33200-x\sqrt{249}\right)y}{24900}-1=0.2
Swap sides so that all variable terms are on the left hand side.
\frac{33200y-x\sqrt{249}y}{24900}-1=0.2
Use the distributive property to multiply 33200-x\sqrt{249} by y.
\frac{33200y-x\sqrt{249}y}{24900}=0.2+1
Add 1 to both sides.
\frac{33200y-x\sqrt{249}y}{24900}=1.2
Add 0.2 and 1 to get 1.2.
33200y-x\sqrt{249}y=1.2\times 24900
Multiply both sides by 24900.
33200y-x\sqrt{249}y=29880
Multiply 1.2 and 24900 to get 29880.
\left(33200-x\sqrt{249}\right)y=29880
Combine all terms containing y.
\left(-\sqrt{249}x+33200\right)y=29880
The equation is in standard form.
\frac{\left(-\sqrt{249}x+33200\right)y}{-\sqrt{249}x+33200}=\frac{29880}{-\sqrt{249}x+33200}
Divide both sides by 33200-x\sqrt{249}.
y=\frac{29880}{-\sqrt{249}x+33200}
Dividing by 33200-x\sqrt{249} undoes the multiplication by 33200-x\sqrt{249}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}