Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

0.2r^{2}=9\times 10^{9}\times 0.4\times 10^{-6}\times 0.8\times 10^{-6}
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by r^{2}.
0.2r^{2}=9\times 10^{9}\times 0.4\times 10^{-12}\times 0.8
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
0.2r^{2}=9\times 10^{-3}\times 0.4\times 0.8
To multiply powers of the same base, add their exponents. Add 9 and -12 to get -3.
0.2r^{2}=9\times \frac{1}{1000}\times 0.4\times 0.8
Calculate 10 to the power of -3 and get \frac{1}{1000}.
0.2r^{2}=\frac{9}{1000}\times 0.4\times 0.8
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
0.2r^{2}=\frac{9}{2500}\times 0.8
Multiply \frac{9}{1000} and 0.4 to get \frac{9}{2500}.
0.2r^{2}=\frac{9}{3125}
Multiply \frac{9}{2500} and 0.8 to get \frac{9}{3125}.
r^{2}=\frac{\frac{9}{3125}}{0.2}
Divide both sides by 0.2.
r^{2}=\frac{9}{3125\times 0.2}
Express \frac{\frac{9}{3125}}{0.2} as a single fraction.
r^{2}=\frac{9}{625}
Multiply 3125 and 0.2 to get 625.
r=\frac{3}{25} r=-\frac{3}{25}
Take the square root of both sides of the equation.
0.2r^{2}=9\times 10^{9}\times 0.4\times 10^{-6}\times 0.8\times 10^{-6}
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by r^{2}.
0.2r^{2}=9\times 10^{9}\times 0.4\times 10^{-12}\times 0.8
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
0.2r^{2}=9\times 10^{-3}\times 0.4\times 0.8
To multiply powers of the same base, add their exponents. Add 9 and -12 to get -3.
0.2r^{2}=9\times \frac{1}{1000}\times 0.4\times 0.8
Calculate 10 to the power of -3 and get \frac{1}{1000}.
0.2r^{2}=\frac{9}{1000}\times 0.4\times 0.8
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
0.2r^{2}=\frac{9}{2500}\times 0.8
Multiply \frac{9}{1000} and 0.4 to get \frac{9}{2500}.
0.2r^{2}=\frac{9}{3125}
Multiply \frac{9}{2500} and 0.8 to get \frac{9}{3125}.
0.2r^{2}-\frac{9}{3125}=0
Subtract \frac{9}{3125} from both sides.
r=\frac{0±\sqrt{0^{2}-4\times 0.2\left(-\frac{9}{3125}\right)}}{2\times 0.2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.2 for a, 0 for b, and -\frac{9}{3125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 0.2\left(-\frac{9}{3125}\right)}}{2\times 0.2}
Square 0.
r=\frac{0±\sqrt{-0.8\left(-\frac{9}{3125}\right)}}{2\times 0.2}
Multiply -4 times 0.2.
r=\frac{0±\sqrt{\frac{36}{15625}}}{2\times 0.2}
Multiply -0.8 times -\frac{9}{3125} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
r=\frac{0±\frac{6}{125}}{2\times 0.2}
Take the square root of \frac{36}{15625}.
r=\frac{0±\frac{6}{125}}{0.4}
Multiply 2 times 0.2.
r=\frac{3}{25}
Now solve the equation r=\frac{0±\frac{6}{125}}{0.4} when ± is plus.
r=-\frac{3}{25}
Now solve the equation r=\frac{0±\frac{6}{125}}{0.4} when ± is minus.
r=\frac{3}{25} r=-\frac{3}{25}
The equation is now solved.