Evaluate
\frac{613}{3000}\approx 0.204333333
Factor
\frac{613}{3 \cdot 2 ^ {3} \cdot 5 ^ {3}} = 0.20433333333333334
Share
Copied to clipboard
0.2+\frac{1}{6}\times 0.027-0.1^{3}\times \frac{1}{6}
Calculate 0.3 to the power of 3 and get 0.027.
0.2+\frac{1}{6}\times \frac{27}{1000}-0.1^{3}\times \frac{1}{6}
Convert decimal number 0.027 to fraction \frac{27}{1000}.
0.2+\frac{1\times 27}{6\times 1000}-0.1^{3}\times \frac{1}{6}
Multiply \frac{1}{6} times \frac{27}{1000} by multiplying numerator times numerator and denominator times denominator.
0.2+\frac{27}{6000}-0.1^{3}\times \frac{1}{6}
Do the multiplications in the fraction \frac{1\times 27}{6\times 1000}.
0.2+\frac{9}{2000}-0.1^{3}\times \frac{1}{6}
Reduce the fraction \frac{27}{6000} to lowest terms by extracting and canceling out 3.
\frac{1}{5}+\frac{9}{2000}-0.1^{3}\times \frac{1}{6}
Convert decimal number 0.2 to fraction \frac{2}{10}. Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{400}{2000}+\frac{9}{2000}-0.1^{3}\times \frac{1}{6}
Least common multiple of 5 and 2000 is 2000. Convert \frac{1}{5} and \frac{9}{2000} to fractions with denominator 2000.
\frac{400+9}{2000}-0.1^{3}\times \frac{1}{6}
Since \frac{400}{2000} and \frac{9}{2000} have the same denominator, add them by adding their numerators.
\frac{409}{2000}-0.1^{3}\times \frac{1}{6}
Add 400 and 9 to get 409.
\frac{409}{2000}-0.001\times \frac{1}{6}
Calculate 0.1 to the power of 3 and get 0.001.
\frac{409}{2000}-\frac{1}{1000}\times \frac{1}{6}
Convert decimal number 0.001 to fraction \frac{1}{1000}.
\frac{409}{2000}-\frac{1\times 1}{1000\times 6}
Multiply \frac{1}{1000} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{409}{2000}-\frac{1}{6000}
Do the multiplications in the fraction \frac{1\times 1}{1000\times 6}.
\frac{1227}{6000}-\frac{1}{6000}
Least common multiple of 2000 and 6000 is 6000. Convert \frac{409}{2000} and \frac{1}{6000} to fractions with denominator 6000.
\frac{1227-1}{6000}
Since \frac{1227}{6000} and \frac{1}{6000} have the same denominator, subtract them by subtracting their numerators.
\frac{1226}{6000}
Subtract 1 from 1227 to get 1226.
\frac{613}{3000}
Reduce the fraction \frac{1226}{6000} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}