Solve for x
x = \frac{\sqrt{1499915}}{30} \approx 40.823672327
x = -\frac{\sqrt{1499915}}{30} \approx -40.823672327
Graph
Share
Copied to clipboard
0.18x^{2}-299.983=0
Subtract 300 from 0.017 to get -299.983.
0.18x^{2}=299.983
Add 299.983 to both sides. Anything plus zero gives itself.
x^{2}=\frac{299.983}{0.18}
Divide both sides by 0.18.
x^{2}=\frac{299983}{180}
Expand \frac{299.983}{0.18} by multiplying both numerator and the denominator by 1000.
x=\frac{\sqrt{1499915}}{30} x=-\frac{\sqrt{1499915}}{30}
Take the square root of both sides of the equation.
0.18x^{2}-299.983=0
Subtract 300 from 0.017 to get -299.983.
x=\frac{0±\sqrt{0^{2}-4\times 0.18\left(-299.983\right)}}{2\times 0.18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.18 for a, 0 for b, and -299.983 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 0.18\left(-299.983\right)}}{2\times 0.18}
Square 0.
x=\frac{0±\sqrt{-0.72\left(-299.983\right)}}{2\times 0.18}
Multiply -4 times 0.18.
x=\frac{0±\sqrt{215.98776}}{2\times 0.18}
Multiply -0.72 times -299.983 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{3\sqrt{1499915}}{250}}{2\times 0.18}
Take the square root of 215.98776.
x=\frac{0±\frac{3\sqrt{1499915}}{250}}{0.36}
Multiply 2 times 0.18.
x=\frac{\sqrt{1499915}}{30}
Now solve the equation x=\frac{0±\frac{3\sqrt{1499915}}{250}}{0.36} when ± is plus.
x=-\frac{\sqrt{1499915}}{30}
Now solve the equation x=\frac{0±\frac{3\sqrt{1499915}}{250}}{0.36} when ± is minus.
x=\frac{\sqrt{1499915}}{30} x=-\frac{\sqrt{1499915}}{30}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}