Solve for x
x=8
x=0
Graph
Share
Copied to clipboard
0.125x^{2}-\frac{1}{2}x\left(x-6\right)=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
0.125x^{2}-\frac{1}{2}x^{2}+3x=0
Use the distributive property to multiply -\frac{1}{2}x by x-6.
-\frac{3}{8}x^{2}+3x=0
Combine 0.125x^{2} and -\frac{1}{2}x^{2} to get -\frac{3}{8}x^{2}.
x\left(-\frac{3}{8}x+3\right)=0
Factor out x.
x=0 x=8
To find equation solutions, solve x=0 and -\frac{3x}{8}+3=0.
0.125x^{2}-\frac{1}{2}x\left(x-6\right)=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
0.125x^{2}-\frac{1}{2}x^{2}+3x=0
Use the distributive property to multiply -\frac{1}{2}x by x-6.
-\frac{3}{8}x^{2}+3x=0
Combine 0.125x^{2} and -\frac{1}{2}x^{2} to get -\frac{3}{8}x^{2}.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-\frac{3}{8}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{8} for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\left(-\frac{3}{8}\right)}
Take the square root of 3^{2}.
x=\frac{-3±3}{-\frac{3}{4}}
Multiply 2 times -\frac{3}{8}.
x=\frac{0}{-\frac{3}{4}}
Now solve the equation x=\frac{-3±3}{-\frac{3}{4}} when ± is plus. Add -3 to 3.
x=0
Divide 0 by -\frac{3}{4} by multiplying 0 by the reciprocal of -\frac{3}{4}.
x=-\frac{6}{-\frac{3}{4}}
Now solve the equation x=\frac{-3±3}{-\frac{3}{4}} when ± is minus. Subtract 3 from -3.
x=8
Divide -6 by -\frac{3}{4} by multiplying -6 by the reciprocal of -\frac{3}{4}.
x=0 x=8
The equation is now solved.
0.125x^{2}-\frac{1}{2}x\left(x-6\right)=0
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
0.125x^{2}-\frac{1}{2}x^{2}+3x=0
Use the distributive property to multiply -\frac{1}{2}x by x-6.
-\frac{3}{8}x^{2}+3x=0
Combine 0.125x^{2} and -\frac{1}{2}x^{2} to get -\frac{3}{8}x^{2}.
\frac{-\frac{3}{8}x^{2}+3x}{-\frac{3}{8}}=\frac{0}{-\frac{3}{8}}
Divide both sides of the equation by -\frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{3}{-\frac{3}{8}}x=\frac{0}{-\frac{3}{8}}
Dividing by -\frac{3}{8} undoes the multiplication by -\frac{3}{8}.
x^{2}-8x=\frac{0}{-\frac{3}{8}}
Divide 3 by -\frac{3}{8} by multiplying 3 by the reciprocal of -\frac{3}{8}.
x^{2}-8x=0
Divide 0 by -\frac{3}{8} by multiplying 0 by the reciprocal of -\frac{3}{8}.
x^{2}-8x+\left(-4\right)^{2}=\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=16
Square -4.
\left(x-4\right)^{2}=16
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-4=4 x-4=-4
Simplify.
x=8 x=0
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}