Evaluate
0.12
Factor
\frac{3}{5 ^ {2}} = 0.12
Share
Copied to clipboard
\frac{0.125}{\frac{24+5}{8}-\left(\frac{1\times 6+5}{6}+2.25\times \frac{1}{3}\right)}
Multiply 3 and 8 to get 24.
\frac{0.125}{\frac{29}{8}-\left(\frac{1\times 6+5}{6}+2.25\times \frac{1}{3}\right)}
Add 24 and 5 to get 29.
\frac{0.125}{\frac{29}{8}-\left(\frac{6+5}{6}+2.25\times \frac{1}{3}\right)}
Multiply 1 and 6 to get 6.
\frac{0.125}{\frac{29}{8}-\left(\frac{11}{6}+2.25\times \frac{1}{3}\right)}
Add 6 and 5 to get 11.
\frac{0.125}{\frac{29}{8}-\left(\frac{11}{6}+\frac{9}{4}\times \frac{1}{3}\right)}
Convert decimal number 2.25 to fraction \frac{225}{100}. Reduce the fraction \frac{225}{100} to lowest terms by extracting and canceling out 25.
\frac{0.125}{\frac{29}{8}-\left(\frac{11}{6}+\frac{9\times 1}{4\times 3}\right)}
Multiply \frac{9}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{0.125}{\frac{29}{8}-\left(\frac{11}{6}+\frac{9}{12}\right)}
Do the multiplications in the fraction \frac{9\times 1}{4\times 3}.
\frac{0.125}{\frac{29}{8}-\left(\frac{11}{6}+\frac{3}{4}\right)}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\frac{0.125}{\frac{29}{8}-\left(\frac{22}{12}+\frac{9}{12}\right)}
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{3}{4} to fractions with denominator 12.
\frac{0.125}{\frac{29}{8}-\frac{22+9}{12}}
Since \frac{22}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{0.125}{\frac{29}{8}-\frac{31}{12}}
Add 22 and 9 to get 31.
\frac{0.125}{\frac{87}{24}-\frac{62}{24}}
Least common multiple of 8 and 12 is 24. Convert \frac{29}{8} and \frac{31}{12} to fractions with denominator 24.
\frac{0.125}{\frac{87-62}{24}}
Since \frac{87}{24} and \frac{62}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{0.125}{\frac{25}{24}}
Subtract 62 from 87 to get 25.
0.125\times \frac{24}{25}
Divide 0.125 by \frac{25}{24} by multiplying 0.125 by the reciprocal of \frac{25}{24}.
\frac{1}{8}\times \frac{24}{25}
Convert decimal number 0.125 to fraction \frac{125}{1000}. Reduce the fraction \frac{125}{1000} to lowest terms by extracting and canceling out 125.
\frac{1\times 24}{8\times 25}
Multiply \frac{1}{8} times \frac{24}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{24}{200}
Do the multiplications in the fraction \frac{1\times 24}{8\times 25}.
\frac{3}{25}
Reduce the fraction \frac{24}{200} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}