Solve for x
x=0.12
Graph
Share
Copied to clipboard
0.12\times 10^{-2}=x\left(2\times 10^{-2}-1\times 10^{-2}\right)
Multiply 0.12 and 1 to get 0.12.
0.12\times \frac{1}{100}=x\left(2\times 10^{-2}-1\times 10^{-2}\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{3}{2500}=x\left(2\times 10^{-2}-1\times 10^{-2}\right)
Multiply 0.12 and \frac{1}{100} to get \frac{3}{2500}.
\frac{3}{2500}=x\left(2\times \frac{1}{100}-1\times 10^{-2}\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{3}{2500}=x\left(\frac{1}{50}-1\times 10^{-2}\right)
Multiply 2 and \frac{1}{100} to get \frac{1}{50}.
\frac{3}{2500}=x\left(\frac{1}{50}-1\times \frac{1}{100}\right)
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{3}{2500}=x\left(\frac{1}{50}-\frac{1}{100}\right)
Multiply 1 and \frac{1}{100} to get \frac{1}{100}.
\frac{3}{2500}=x\times \frac{1}{100}
Subtract \frac{1}{100} from \frac{1}{50} to get \frac{1}{100}.
x\times \frac{1}{100}=\frac{3}{2500}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{2500}\times 100
Multiply both sides by 100, the reciprocal of \frac{1}{100}.
x=\frac{3}{25}
Multiply \frac{3}{2500} and 100 to get \frac{3}{25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}