Solve for x
x=\frac{5x_{0}}{7}+\frac{53}{350}
Solve for x_0
x_{0}=\frac{7x}{5}-0.212
Graph
Share
Copied to clipboard
0.12=0.0096+\left(0.94-x\right)\times 0.14+x_{0}\times 0.1
Multiply 0.06 and 0.16 to get 0.0096.
0.12=0.0096+0.1316-0.14x+x_{0}\times 0.1
Use the distributive property to multiply 0.94-x by 0.14.
0.12=0.1412-0.14x+x_{0}\times 0.1
Add 0.0096 and 0.1316 to get 0.1412.
0.1412-0.14x+x_{0}\times 0.1=0.12
Swap sides so that all variable terms are on the left hand side.
-0.14x+x_{0}\times 0.1=0.12-0.1412
Subtract 0.1412 from both sides.
-0.14x+x_{0}\times 0.1=-0.0212
Subtract 0.1412 from 0.12 to get -0.0212.
-0.14x=-0.0212-x_{0}\times 0.1
Subtract x_{0}\times 0.1 from both sides.
-0.14x=-0.0212-0.1x_{0}
Multiply -1 and 0.1 to get -0.1.
-0.14x=-\frac{x_{0}}{10}-0.0212
The equation is in standard form.
\frac{-0.14x}{-0.14}=\frac{-\frac{x_{0}}{10}-0.0212}{-0.14}
Divide both sides of the equation by -0.14, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{x_{0}}{10}-0.0212}{-0.14}
Dividing by -0.14 undoes the multiplication by -0.14.
x=\frac{5x_{0}}{7}+\frac{53}{350}
Divide -0.0212-\frac{x_{0}}{10} by -0.14 by multiplying -0.0212-\frac{x_{0}}{10} by the reciprocal of -0.14.
0.12=0.0096+\left(0.94-x\right)\times 0.14+x_{0}\times 0.1
Multiply 0.06 and 0.16 to get 0.0096.
0.12=0.0096+0.1316-0.14x+x_{0}\times 0.1
Use the distributive property to multiply 0.94-x by 0.14.
0.12=0.1412-0.14x+x_{0}\times 0.1
Add 0.0096 and 0.1316 to get 0.1412.
0.1412-0.14x+x_{0}\times 0.1=0.12
Swap sides so that all variable terms are on the left hand side.
-0.14x+x_{0}\times 0.1=0.12-0.1412
Subtract 0.1412 from both sides.
-0.14x+x_{0}\times 0.1=-0.0212
Subtract 0.1412 from 0.12 to get -0.0212.
x_{0}\times 0.1=-0.0212+0.14x
Add 0.14x to both sides.
0.1x_{0}=\frac{7x}{50}-0.0212
The equation is in standard form.
\frac{0.1x_{0}}{0.1}=\frac{\frac{7x}{50}-0.0212}{0.1}
Multiply both sides by 10.
x_{0}=\frac{\frac{7x}{50}-0.0212}{0.1}
Dividing by 0.1 undoes the multiplication by 0.1.
x_{0}=\frac{7x}{5}-\frac{53}{250}
Divide -0.0212+\frac{7x}{50} by 0.1 by multiplying -0.0212+\frac{7x}{50} by the reciprocal of 0.1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}