Evaluate
\frac{149}{1500}\approx 0.099333333
Factor
\frac{149}{3 \cdot 2 ^ {2} \cdot 5 ^ {3}} = 0.09933333333333333
Share
Copied to clipboard
0.1-\frac{1}{30}\times \frac{1}{50}
Fraction \frac{-1}{30} can be rewritten as -\frac{1}{30} by extracting the negative sign.
0.1+\frac{-1}{30\times 50}
Multiply -\frac{1}{30} times \frac{1}{50} by multiplying numerator times numerator and denominator times denominator.
0.1+\frac{-1}{1500}
Do the multiplications in the fraction \frac{-1}{30\times 50}.
0.1-\frac{1}{1500}
Fraction \frac{-1}{1500} can be rewritten as -\frac{1}{1500} by extracting the negative sign.
\frac{1}{10}-\frac{1}{1500}
Convert decimal number 0.1 to fraction \frac{1}{10}.
\frac{150}{1500}-\frac{1}{1500}
Least common multiple of 10 and 1500 is 1500. Convert \frac{1}{10} and \frac{1}{1500} to fractions with denominator 1500.
\frac{150-1}{1500}
Since \frac{150}{1500} and \frac{1}{1500} have the same denominator, subtract them by subtracting their numerators.
\frac{149}{1500}
Subtract 1 from 150 to get 149.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}