Solve for v
v=\frac{5\Omega }{2\pi }+С
\Omega \neq -\frac{2С}{5}\text{ and }\Omega \neq -4\pi С_{1}\text{ and }\Omega \neq 4С_{2}
Share
Copied to clipboard
0.1v=1\int \frac{1}{4\pi }\mathrm{d}\Omega
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by v.
0.1v=\int \frac{1}{4\pi }\mathrm{d}\Omega
Reorder the terms.
0.1v=\frac{\Omega }{4\pi }+С
The equation is in standard form.
\frac{0.1v}{0.1}=\frac{\frac{\Omega }{4\pi }+С}{0.1}
Multiply both sides by 10.
v=\frac{\frac{\Omega }{4\pi }+С}{0.1}
Dividing by 0.1 undoes the multiplication by 0.1.
v=\frac{5\Omega }{2\pi }+С
Divide С+\frac{\Omega }{4\pi } by 0.1 by multiplying С+\frac{\Omega }{4\pi } by the reciprocal of 0.1.
v=\frac{5\Omega }{2\pi }+С\text{, }v\neq 0
Variable v cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}